A056968 10^(n-1) modulo n.
0, 0, 1, 0, 0, 4, 1, 0, 1, 0, 1, 4, 1, 10, 10, 0, 1, 10, 1, 0, 16, 10, 1, 16, 0, 10, 19, 20, 1, 10, 1, 0, 1, 10, 25, 28, 1, 10, 22, 0, 1, 40, 1, 32, 10, 10, 1, 16, 8, 0, 49, 12, 1, 46, 45, 24, 43, 10, 1, 40, 1, 10, 37, 0, 55, 10, 1, 48, 31, 20, 1, 64, 1, 10, 25, 12, 67, 4, 1, 0, 73, 10, 1
Offset: 1
Examples
a(6)=4 since 100000=6*16666+4
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
0, seq(10&^(n-1) mod n, n=2..100); # Robert Israel, Nov 25 2024
-
Mathematica
Table[PowerMod[10,n-1,n],{n,100}] (* Harvey P. Dale, Jul 17 2021 *)
Formula
If n is of form 2^i*5^j then a(n)=0, otherwise a(n)=10^(n-1)+n-A053041(n)
From Robert Israel, Nov 25 2024: (Start)
If n is prime other than 2 or 5, then a(n) = 1.
If n = 2^i * 5^j * p where p is a prime > 10^(2^i * 5^j), then a(n) = 10^(2^i * 5^j).
If n = 2^i * 5^j * p where p is a prime and
2^(2^i * 5^j - 1 - i) * 5^(2^i * 5^j -1 - j) > p > 2^(2^i * 5^j-2 - u) * 5^(2^i * 5^j-1-j),
then a(n) = 10^(2^i * 5^j - 1) - 2^i * 5^j * p.
For example, with i = 0 and j = 1 we get a(5*p) = 10^4 - 5*p if p is a prime between 1000 and 2000.
(End)