cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A057025 Smallest prime of form (2n+1)*2^m+1 for some m.

Original entry on oeis.org

2, 7, 11, 29, 19, 23, 53, 31, 137, 1217, 43, 47, 101, 109, 59, 7937, 67, 71, 149, 79, 83, 173, 181
Offset: 0

Views

Author

Henry Bottomley, Jul 24 2000

Keywords

Comments

next term a(23) = 47*2^583+1 > 10^177. Sequence then continues: 197, 103, 107, 881, 229, 1889, 977, 127, 131, 269, 139, 569, 293, 151, 617, 317, 163, 167, 1361, 349, 179, 23297, 373, 191, 389, 199, 809, ...
If no such prime exists for any m then 2n+1 is called a Sierpiński number. One could use a(n) = 0 for these cases. E.g., a(39278) = 0 because 78557 is a Sierpiński number. For the corresponding numbers m see A046067(n+1), n >= 0, where -1 entries corresponds to a(n) = 0. See also the Sierpiński links there. - Wolfdieter Lang, Feb 07 2013

Examples

			a(5)=23 because 2*5+1=11 and smallest prime of the form 11*2^m+1 is 23 (since 11+1=12 is not prime)
		

Crossrefs

A244609 Least prime divisor of 659*2^n-1.

Original entry on oeis.org

2, 3, 5, 3, 13, 3, 5, 3, 73, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 977, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 31, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 73, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 13477, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 48430237, 3, 5, 3, 7, 3, 5, 3, 13
Offset: 0

Views

Author

Robert Israel, Jul 01 2014

Keywords

Comments

a(n) = 3 if n is odd.
a(n) = 5 if n == 2 (mod 4).
From Bruno Berselli, Jul 02 2014: (Start)
a(n) = 7 if n == 0 (mod 12) for n>0.
a(n) = 13 if n == 4 (mod 12).
a(n) == 3 or 7 (mod 12) for n>1. (End)
A040081(659) = 800516, so 800516 is the first n for which a(n) = 659*2^n-1 (found by David W Linton in 2004). - Jens Kruse Andersen, Jul 02 2014

Examples

			For n=4, 659*2^4-1 = 10543 = 13 * 811 so a(4) = 13.
		

Crossrefs

Programs

  • Magma
    [PrimeDivisors(659*2^n-1)[1]: n in [0..100]]; // Bruno Berselli, Jul 02 2014
  • Maple
    f:= proc(m) local F;
       F:= map(t -> t[1],ifactors(659*2^m-1,easy)[2]);
       F:= select(type,F,integer);
       if nops(F) = 0 then
         F:= map(t -> t[1],ifactors(659*2^m-1)[2]);
         min(F);
       else min(F)
       fi
    end proc;
    seq(f(n), n= 0 .. 100);

A274589 Primes not of the form (prime+1)*2^k-1 with k>=1.

Original entry on oeis.org

2, 3, 13, 17, 19, 29, 37, 41, 43, 53, 61, 67, 73, 89, 97, 101, 103, 109, 113, 131, 137, 139, 149, 157, 163, 173, 181, 193, 197, 199, 211, 229, 233, 241, 251, 257, 269, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 349, 353, 367
Offset: 1

Views

Author

Gionata Neri, Jun 29 2016

Keywords

Comments

A permutation of A057026 (excluding the zeros, e.g., A057026(254601) = 0).

Examples

			103 = (51+1)*2^1-1 = (25+1)*2^2-1 = (12+1)*2^3-1, the numbers 51, 25 and 12 are not primes, so 103 is in the sequence.
71 = (35+1)*2^1-1 = (17+1)*2^2-1 = (8+1)*2^3-1, the number 17 is prime, so 71 is not in the sequence.
		

Crossrefs

Cf. A057026, A266233 (complement with respect to A000040).

Programs

  • Maple
    filter := proc(n) local k;
      if not isprime(n) then return false fi;
      for k from 1 to padic:-ordp(n+1,2) do
         if isprime((n+1)/2^k-1) then return false
         fi
      od:
      true
    end proc:
    select(filter, [2,seq(i,i=3..1000,2)]); # Robert Israel, Jun 29 2016
Showing 1-3 of 3 results.