cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057063 Let P(n) of a sequence s(1),s(2),s(3),... be obtained by leaving s(1),...,s(n) fixed and reverse-cyclically permuting every n consecutive terms thereafter; apply P(2) to 1,2,3,... to get PS(2), then apply P(3) to PS(2) to get PS(3), then apply P(4) to PS(3), etc. The limit of PS(n) is A057063.

Original entry on oeis.org

1, 2, 4, 6, 3, 10, 12, 7, 16, 18, 11, 22, 13, 5, 28, 30, 19, 20, 36, 23, 40, 42, 9, 46, 29, 31, 52, 37, 35, 58, 60, 15, 44, 66, 43, 70, 72, 25, 54, 78, 8, 82, 61, 55, 88, 65, 59, 68, 96, 27, 100, 102, 38, 106, 108, 71, 112, 85, 33, 89, 94, 79, 48, 126, 83, 130
Offset: 1

Views

Author

Clark Kimberling, Aug 01 2000

Keywords

Comments

It appears that this is a permutation of the integers. - Michel Marcus, Feb 19 2016
The fact that this is a permutation is proved at the MathOverflow link below. Also from that link: a(n)+1 is prime if and only if a(n) = 2*(n-1). - Ilya I. Bogdanov, Feb 15 2022
From Jianing Song, Sep 27 2023: (Start)
Let {b(n)} be the inverse permutation of this sequence, then each number n >= 3 is moved for b(n)-2 times during the process.
Proof: suppose that this number is k, which is well-defined since PS(1), PS(2), ... has a limit. Suppose that PS(i+1)(c_i) = n for each i >= 0, that is, c_i is the index of n after i steps. In the (i+1)-th step, each group of PS(i+1) contains i+2 elements, and every element is moved if and only if it has index at least i+3. We obtain that k = #{i >= 0 : c_i >= i+3}.
Note that if c_i <= i+2 for some i, then from the (i+1)-th step on, each group contains at least i+2 numbers so the first i+2 numbers in the sequence remain fixed, which means that n = PS(i+1)(c_i) = PS(i+2)(c_i) = ... = a(c_i), so c_i = c_{i+1} = ... = b(n). This shows that {i >= 0 : c_i >= i+3} = {0, 1, ..., k-1}, which implies that k is the smallest number such that c_k <= k+2. On one hand, since c_k <= k+2, we have c_k = b(n), so b(n) <= k+2. On the other hand, from the (b(n)-1)-th step on, each group contains at least b(n) numbers so the first b(n) numbers in the sequence remain fixed, which means that PS(b(n)-1)(b(n)) = PS(b(n))(b(n)) = ... = a(b(n)) = n, so c_{b(n)-2} = b(n), and k <= b(n)-2. In conclusion, we have k = b(n)-2.
By the MathOverflow link, we have a(n) <= 2*n-2 for all n, where the equality holds if and only if a(n)+1 is prime. On the other hand, it is hard to get a lower bound for {a(n)}, so it is infeasible to calculate the inverse permutation of this sequence. (End)

Examples

			PS(2) begins with 1,2,4,3,6,5,8;
PS(3) begins with 1,2,4,6,5,3,7;
PS(4) begins with 1,2,4,6,3,7,10.
		

Crossrefs

Programs

  • PARI
    get(v, iv) = if (iv > #v, 0, v[iv]);
    rcp(nbn, nbp, startv, v) = {w = vector(nbn); for (k=1, nbn, if (k % nbp, jv = startv+k, jv = startv+k-nbp); w[k] = get(v, jv);); w;}
    lista(nn) = {v = vector(nn, n, n); print1(v[1], ", ", v[2], ", "); startv = 3; for (n=3, nn, w = rcp(nn-n+1, n-1, startv, v); startv = 2; if (w[1] == 0, break); print1(w[1], ", "); v = w;);} \\ Michel Marcus, Feb 19 2016

Formula

Conjecture: a(n) = A057033(n-1) + 1 for n > 1 with a(1) = 1. - Mikhail Kurkov, Mar 10 2022