A057096 Saint-Exupéry numbers: ordered products of the three sides of Pythagorean triangles.
60, 480, 780, 1620, 2040, 3840, 4200, 6240, 7500, 12180, 12960, 14760, 15540, 16320, 20580, 21060, 30720, 33600, 40260, 43740, 49920, 55080, 60000, 65520, 66780, 79860, 92820, 97440, 97500, 103680, 113400, 118080, 120120, 124320, 130560, 131820, 164640
Offset: 1
Keywords
Examples
a(1) = 3*4*5 = 60.
References
- Richard K. Guy, "Triangles with Integer Sides, Medians and Area." D21 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 188-190, 1994.
- Antoine de Saint-Exupéry, Problème du Pharaon, Liège : Editions Dynamo, 1957.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Andrew Bremner and Richard K. Guy, A Dozen Difficult Diophantine Dilemmas, The American Mathematical Monthly, Vol. 95, No. 1 (1988), pp. 31-36.
- Ernest J. Eckert, Problem 994, Crux Mathematicorum, Vol. 10, No. 10 (1984), p. 318, entire issue.
- Richard K. Guy, Comment to Problem 994, Crux Mathematicorum, Vol. 12, No. 5 (1986), p. 109, entire issue.
- Henry Plane, Calcule-moi un parallélépipède..., AMPEP, PLOT No. 22 (2002), pp. 22-23.
- Giovanni Resta, Saint-Exupery numbers.
- Antoine de Saint Exupéry, Le Problème du Pharaon, Succession Saint Exupéry - d'Agay, 2018.
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
Programs
-
Mathematica
k=5000000; lst={}; Do[Do[If[IntegerQ[a=Sqrt[c^2-b^2]], If[a>=b, Break[]]; x=a*b*c; If[x<=k, AppendTo[lst,x]]], {b,c-1,4,-1}], {c,5,400,1}]; Union@lst (* Vladimir Joseph Stephan Orlovsky, Sep 05 2009 *)
Comments