A057117 Permutation of nonnegative integers obtained by mapping each forest of A000108[n] rooted binary plane trees from breadth-first to depth-first encoding.
0, 1, 2, 3, 4, 5, 7, 8, 6, 9, 10, 12, 13, 11, 17, 18, 21, 22, 20, 14, 15, 16, 19, 23, 24, 26, 27, 25, 31, 32, 35, 36, 34, 28, 29, 30, 33, 45, 46, 49, 50, 48, 58, 59, 63, 64, 62, 54, 55, 57, 61, 37, 38, 40, 41, 39, 44, 47, 42, 43, 56, 60, 51, 52, 53, 65, 66, 68, 69, 67, 73, 74
Offset: 0
Keywords
Links
- A. Karttunen, Gatomorphisms (Includes the complete Scheme program for computing this sequence)
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Maple
a(n) = CatalanRankGlobal(btbf2df(binrev(A014486[n]),0,1)/2) Maple procedure CatalanRank is adapted from the algorithm 3.23 of the CAGES book, see A014486 CatalanRank := proc(n,aa) local x,y,lo,a; a := binrev(aa); y := 0; lo := 0; for x from 1 to (2*n)-1 do lo := lo + (1-(a mod 2))*Mn(n,x,y+1); y := y - ((-1)^a); a := floor(a/2); od; RETURN((binomial(2*n,n)/(n+1))-(lo+1)); end; CatalanRankGlobal := proc(a) local n; n := floor(binwidth(a)/2); RETURN(add((binomial(2*j,j)/(j+1)),j=0..(n-1))+CatalanRank(n,a)); end;