cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A057120 Global ranks of terms of A057119.

Original entry on oeis.org

1, 2, 12, 970, 21801077, 33006325301864331, 216010416087275256441802643730702446
Offset: 0

Views

Author

Antti Karttunen, Aug 11 2000

Keywords

Comments

CatalanRankGlobal given in A057117.

Formula

map(CatalanRankGlobal, A057119) or a(n) = A057121(n) + Sum_{j=0..((2^n)-1)} A000108[j]

A057121 Local ranks of terms of A057119.

Original entry on oeis.org

0, 0, 3, 344, 8398380, 13286191841734681, 89262894246121771416347364297566757
Offset: 0

Views

Author

Antti Karttunen, Aug 11 2000

Keywords

Comments

CatalanRank given in A057117.

Crossrefs

Cf. A057120.

Formula

a(n) = CatalanRank(2^n, bt_df2tree_apply_k_times(2, n))

A080070 Decimal encoding of parenthesizations produced by simple iteration starting from empty parentheses and where each successive parenthesization is obtained from the previous by reflecting it as a general tree/parenthesization, then adding an extra stem below the root and then reflecting the underlying binary tree.

Original entry on oeis.org

0, 10, 1010, 101100, 10110010, 1011100100, 101100110100, 10111001001100, 1011100110100010, 101110011010011000, 10110011101001100010, 1011110010011011000100, 101100111011010001100100
Offset: 0

Views

Author

Antti Karttunen, Jan 27 2003

Keywords

Comments

Corresponding Lisp/Scheme S-expressions are (), (()), (()()), (()(())), (()(())()), (()((())())), (()(())(()())), ...
Conjecture: only the terms in positions 0,1,2 and 4 are symmetric, i.e., A057164(A080068(n)) = A080068(n) (equivalently: A036044(A080069(n)) = A080069(n)) only when n is one of {0,1,2,4}. If this is true, then the formula given in A079438 is exact. I (AK) have checked this up to n=404631 with no other occurrence of a symmetric (general) tree.

Examples

			This demonstrates how to get the fourth term 10110010 from the 3rd term 101100. The corresponding binary and general trees plus parenthesizations are shown. The first operation reflects the general tree, the second adds a new stem under the root and the third reflects the underlying binary tree, which induces changes on the corresponding general tree:
..............................................
.....\/................\/\/..........\/\/.....
......\/......\/\/......\/............\/......
.....\/........\/........\/..........\/.......
......(A057164).(A057548)..(A057163)..........
........................o.....................
........................|.....................
........o.....o.........o...o.........o.......
........|.....|..........\./..........|.......
....o...o.....o...o.......o.........o.o.o.....
.....\./.......\./........|..........\|/......
......*.........*.........*...........*.......
..[()(())]..[(())()]..[((())())]..[()(())()]..
...101100....110010....11100100....10110010...
		

Crossrefs

Compare to similar Wolframesque plots given in A122229, A122232, A122235, A122239, A122242, A122245. See also A079438, A080067, A080071, A057119.

Formula

a(n) = A007088(A080069(n)) = A063171(A080068(n)).

A057122 The binary encoding (as a rooted planar tree) of each rooted planar binary tree. See A057123 for illustration.

Original entry on oeis.org

0, 10, 180, 210, 2920, 2980, 3380, 3490, 3730, 46800, 46920, 47720, 47940, 48420, 54120, 54180, 55860, 56130, 56610, 59700, 59810, 60690, 62610, 748960, 749200, 750800, 751240, 752200, 763600, 763720, 767080, 767620, 768580, 774760, 774980
Offset: 0

Views

Author

Antti Karttunen, Aug 11 2000

Keywords

Comments

bintree_depth_first2tree given in A057119.

Crossrefs

Cf. A057119, A057123, A057124. Subset of A057517.

Programs

  • Maple
    map(bintree_depth_first2tree, A014486);
Showing 1-4 of 4 results.