A057137 Concatenate next digit at right hand end (where the next digit after 9 is again 0).
0, 1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 1234567890, 12345678901, 123456789012, 1234567890123, 12345678901234, 123456789012345, 1234567890123456, 12345678901234567, 123456789012345678, 1234567890123456789, 12345678901234567890, 123456789012345678901
Offset: 0
References
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 61.
Links
- T. D. Noe and Hieronymus Fischer, Table of n, a(n) for n = 0..200 (terms up to 100 from T. D. Noe)
- Clifford Pickover, Triangle of the Gods
- Index entries for linear recurrences with constant coefficients, signature (10,0,0,0,0,0,0,0,0,1,-10).
Crossrefs
Programs
-
Maple
A057137:=n->floor((137174210/1111111111)*10^n); seq(A057137(n), n=0..20); # Wesley Ivan Hurt, Apr 18 2014
-
Mathematica
a[n_]:=Floor[137174210/1111111111*10^n]; Array[a,19,0] (* Robert G. Wilson v, Apr 18 2014 *)
-
PARI
A057137(n)=sum(i=1,n,i%10*10^(n-i)) \\ M. F. Hasler, Jan 13 2013
-
PARI
A057137(n)=137174210*10^n\1111111111 \\ M. F. Hasler, Jan 13 2013
-
Python
def A057137(n): s = '0123456789'; return int((n+1)//10*s + s[:(n+1)%10]) # Ya-Ping Lu, Apr 08 2025
Formula
a(n) = 10*(a(n-1)-floor[n/10]) + n = floor[A057139(n)/10^(n-1)].
a(n) = floor((137174210/1111111111)*10^n). - Hieronymus Fischer, Jan 03 2013, corrected by M. F. Hasler, Jan 13 2013
Comments