A057148 Palindromes only using 0 and 1 (i.e., base-2 palindromes).
0, 1, 11, 101, 111, 1001, 1111, 10001, 10101, 11011, 11111, 100001, 101101, 110011, 111111, 1000001, 1001001, 1010101, 1011101, 1100011, 1101011, 1110111, 1111111, 10000001, 10011001, 10100101, 10111101, 11000011, 11011011, 11100111, 11111111, 100000001
Offset: 1
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
(* get NextPalindrome from A029965 *) Select[ NestList[ NextPalindrome, 0, 11110], Max(AT) IntegerDigits(AT)# < 2 &] (* Robert G. Wilson v *) Select[FromDigits/@Tuples[{0,1},8],IntegerDigits[#]==Reverse[ IntegerDigits[ #]]&] (* Harvey P. Dale, Apr 20 2015 *)
-
Python
from itertools import count, islice, product def agen(): # generator of terms yield from [0, 1] for d in count(2): for rest in product("01", repeat=d//2-1): left = "1" + "".join(rest) for mid in [[""], ["0", "1"]][d%2]: yield int(left + mid + left[::-1]) print(list(islice(agen(), 32))) # Michael S. Branicky, Mar 29 2022
-
Python
def A057148(n): if n == 1: return 0 a = 1<
Chai Wah Wu, Jun 10 2024 -
Sage
[int(n.binary()) for n in (0..220) if Word(n.digits(2)).is_palindrome()] # Peter Luschny, Sep 13 2018
Comments