A057162 Signature-permutation of a Catalan Automorphism: rotate one step clockwise the triangulations of polygons encoded by A014486.
0, 1, 3, 2, 8, 6, 7, 4, 5, 22, 19, 20, 14, 15, 21, 16, 17, 9, 10, 18, 11, 12, 13, 64, 60, 61, 51, 52, 62, 53, 54, 37, 38, 55, 39, 40, 41, 63, 56, 57, 42, 43, 58, 44, 45, 23, 24, 46, 25, 26, 27, 59, 47, 48, 28, 29, 49, 30, 31, 32, 50, 33, 34, 35, 36, 196, 191, 192, 177, 178
Offset: 0
Keywords
Links
- A. Karttunen, Table of n, a(n) for n = 0..2055
- A. Karttunen, Illustration of how the five triangulations of a pentagon will rotate, and the corresponding changes it induces in the binary trees
- A. Karttunen, Introductory Survey of Catalan Automorphisms and Bijections (an unfinished draft), pp. 51-54.
- Index entries for signature-permutations of Catalan automorphisms
Crossrefs
Programs
-
Maple
a(n) = CatalanRankGlobal(RotateTriangularizationR(A014486[n])) RotateTriangularizationR := n -> ReflectBinTree(RotateTriangularization(ReflectBinTree(n))); with(group); A057162_CycleCounts := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,RotateTriangularization(CatalanUnrank(n,r)))]; od; a := [op(a),(`if`((n < 2),1,nops(convert(b,'disjcyc'))))]; od; RETURN(a); end; # See also the code in A057161.
Comments