A057197 Numbers k such that 2^k + 15 is prime.
1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 22, 23, 26, 30, 32, 40, 42, 46, 61, 72, 76, 155, 180, 198, 203, 310, 328, 342, 508, 510, 515, 546, 808, 1563, 2772, 3882, 3940, 4840, 7518, 11118, 11552, 11733, 12738, 12858, 17421, 44122, 64660, 163560, 172455, 180496, 325866, 481840, 1009168
Offset: 1
Keywords
Examples
For k = 5, 2^5 + 15 = 47 is prime. For k = 15, 2^15 + 15 = 32783 is prime.
Links
- Henri Lifchitz and Renaud Lifchitz (Editors), Search for 2^n+15, PRP Top Records.
Crossrefs
Programs
-
Magma
[n: n in [0..1500] | IsPrime(2^n+15)]; // Vincenzo Librandi, Aug 28 2015
-
Mathematica
Do[ If[ PrimeQ[ 2^n + 15 ], Print[n]], { n, 1, 12422 }] Select[Range[15000], PrimeQ[2^# + 15] &] (* Vincenzo Librandi, Aug 28 2015 *)
-
PARI
for(n=1,oo,ispseudoprime(2^n+15)&&print1(n",")) \\ M. F. Hasler, Jul 18 2016
Extensions
a(45)-a(53) from Robert Price, Dec 06 2013
a(54) from Robert Price, Sep 14 2015
a(55) from Stefano Morozzi, added by Elmo R. Oliveira, Dec 11 2023
Comments