cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057197 Numbers k such that 2^k + 15 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 22, 23, 26, 30, 32, 40, 42, 46, 61, 72, 76, 155, 180, 198, 203, 310, 328, 342, 508, 510, 515, 546, 808, 1563, 2772, 3882, 3940, 4840, 7518, 11118, 11552, 11733, 12738, 12858, 17421, 44122, 64660, 163560, 172455, 180496, 325866, 481840, 1009168
Offset: 1

Views

Author

Robert G. Wilson v, Sep 15 2000

Keywords

Comments

a(55) > 5*10^5. - Robert Price, Sep 14 2015
For these numbers k, 2^(k-1)*(2^k+15) has deficiency 16 (see A125248). - M. F. Hasler, Jul 18 2016

Examples

			For k = 5, 2^5 + 15 = 47 is prime.
For k = 15, 2^15 + 15 = 32783 is prime.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), this sequence (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1500] | IsPrime(2^n+15)]; // Vincenzo Librandi, Aug 28 2015
    
  • Mathematica
    Do[ If[ PrimeQ[ 2^n + 15 ], Print[n]], { n, 1, 12422 }]
    Select[Range[15000], PrimeQ[2^# + 15] &] (* Vincenzo Librandi, Aug 28 2015 *)
  • PARI
    for(n=1,oo,ispseudoprime(2^n+15)&&print1(n",")) \\ M. F. Hasler, Jul 18 2016

Extensions

a(45)-a(53) from Robert Price, Dec 06 2013
a(54) from Robert Price, Sep 14 2015
a(55) from Stefano Morozzi, added by Elmo R. Oliveira, Dec 11 2023