A057201 Numbers k such that 2^k + 21 is prime.
1, 3, 4, 5, 7, 8, 11, 15, 16, 19, 44, 48, 51, 52, 61, 163, 196, 456, 492, 911, 997, 1616, 1631, 1647, 1803, 1899, 3112, 3584, 3956, 6848, 7023, 9535, 16657, 27035, 33843, 36551, 38859, 81485, 107287, 131383, 139476, 158497, 210061, 216752, 339168, 341355, 376731, 1173095
Offset: 1
Keywords
Examples
k = 15, 2^15 + 21 = 32789 is prime. k = 16, 2^16 + 21 = 65557 is prime.
Links
- Henri Lifchitz and Renaud Lifchitz, Search for 2^n+21, PRP Top Records.
Crossrefs
Programs
-
Magma
[n: n in [0..1000] | IsPrime(2^n+21)]; // Vincenzo Librandi, Aug 28 2015
-
Mathematica
Do[ If[ PrimeQ[ 2^n + 21 ], Print[ n ] ], {n, 1, 4000} ] Select[Range[10000], PrimeQ[2^# + 21] &] (* Vincenzo Librandi, Aug 28 2015 *)
-
PARI
is(n)=isprime(2^n+21) \\ Charles R Greathouse IV, Feb 17 2017
Extensions
a(30)-a(47) from Robert Price, Dec 06 2013
a(48) found by Stefano Morozzi, added by Elmo R. Oliveira, Nov 25 2023
Comments