A057210 Number of fullerenes with 2n vertices (or carbon atoms), counting enantiomorphic pairs as distinct.
1, 0, 1, 1, 3, 3, 10, 9, 23, 30, 66, 80, 162, 209, 374, 507, 835, 1113, 1778, 2344, 3532, 4670, 6796, 8825, 12501, 16091, 22142, 28232, 38016, 47868, 63416, 79023, 102684, 126973, 162793, 199128, 252082, 306061, 382627, 461020
Offset: 10
Keywords
References
- P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Cambridge Univ. Press, 1995, see p. 32.
Links
- Gunnar Brinkmann, Table of n, a(n) for n = 10..100 (Received Aug 18, 2006)
- Philip Engel and Peter Smillie The number of non-negative curvature triangulations of S^2, arXiv:1702.02614 [math.GT], 2017.
- Philip Engel, Jan Goedgebeur, and Peter Smillie, Exact enumeration of fullerenes, arXiv:2304.01655 [math.GT], 2023.
Formula
a(n) = (809/1306069401600)*sigma_9(n) + O(n^8) where sigma_9(n) is the ninth divisor power sum, A013957. - Philip Engel, Nov 29 2017