cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A057405 Low-temperature partition function expansion for Kagome net (Potts model, q=4).

Original entry on oeis.org

1, 0, 0, 0, 9, 0, 24, 36, 90, 228, 468, 1296, 2946, 7272, 20808, 48612, 143028, 362700, 977562, 2702592, 7084962, 20179368, 54981234, 154896552, 438387402, 1224515736, 3507218586, 9902866092, 28373581638, 81503463852
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Crossrefs

A002928 Magnetization for square lattice.

Original entry on oeis.org

1, 0, -2, -8, -34, -152, -714, -3472, -17318, -88048, -454378, -2373048, -12515634, -66551016, -356345666, -1919453984, -10392792766, -56527200992, -308691183938, -1691769619240, -9301374102034
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. M. Yeomans, Statistical mechanics of phase transitions, Oxford Univ. Press, 1992, p. 93.

Crossrefs

Cf. other structures: A007206, A007207, A002929, A002930, A003193, A003196.
Cf. Potts model: A057374, A057378.
Cf. A002927 (susceptibility).

Programs

  • Maple
    series((1+x)^(1/4)*(1-6*x+x^2)^(1/8)/(1-x)^(1/2),x,40).
  • Mathematica
    CoefficientList[Series[(1+x)^(1/4)*(1-6*x+x^2)^(1/8)/(1-x)^(1/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 27 2024 *)

Formula

n*a(n) + 6*(-n+1)*a(n-1) + 4*a(n-2) + 6*(n-3)*a(n-3) + (-n+4)*a(n-4) = 0. - R. J. Mathar, Mar 08 2013
a(n) ~ -Gamma(1/8) * (1 + sqrt(2))^(2*n - 1/2) / (Pi * 2^(57/16) * n^(9/8)). - Vaclav Kotesovec, Apr 27 2024

A057375 Low-temperature susceptibility expansion for square lattice (Potts model, q=3).

Original entry on oeis.org

2, 0, 16, 16, 100, 216, 844, 1552, 7844, 12112, 60268, 118944, 424072, 1081392, 3201728, 8670688, 25713154, 67206560, 203077760, 532881432, 1558159918, 4250639632, 11956293152, 33296697848, 92820406096, 257249275776
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2000

Keywords

Crossrefs

A057378 Low-temperature magnetization expansion for square lattice (Potts model, q=4).

Original entry on oeis.org

1, 0, 0, 0, -4, 0, -16, -32, -28, -288, -400, -1024, -5268, -5920, -32160, -82720, -163020, -737568, -1482784, -4644992, -15095436, -33307648, -117747376, -312435552, -842726356, -2747491616, -7020371952, -21348043296
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Crossrefs

A057382 Low-temperature magnetization expansion for hexagonal lattice (Potts model, q=3).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, -3, 0, 0, 0, -18, -18, 24, 0, -171, -162, 153, 252, -1704, -2106, 1998, 2586, -14364, -28098, 19008, 43020, -147024, -317304, 125775, 612954, -1370868, -3909528, 907209, 7487136, -11849868, -46762686, 252159
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

Crossrefs

A057383 Low-temperature susceptibility expansion for hexagonal lattice (Potts model, q=3).

Original entry on oeis.org

2, 0, 0, 0, 24, 24, -20, 0, 366, 324, -42, -312, 4788, 6036, -1356, -1820, 54036, 99252, -3024, -53352, 686988, 1382336, 285870, -926172, 7988984, 19975392, 6245886, -12161464, 89970804, 273568968, 134393334, -181279824
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

Crossrefs

A057387 Low-temperature susceptibility expansion for hexagonal lattice (Potts model, q=4).

Original entry on oeis.org

3, 0, 0, 0, 36, 72, -72, 0, 711, 1080, 144, -2556, 12852, 23004, -504, -21192, 122877, 525996, 69366, -531576, 1970154, 7833756, 6613164, -12953124, 24243261, 137623572, 130318974, -138059232, 115953372, 2338653528
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

Crossrefs

A057390 Low-temperature magnetization expansion for honeycomb net (Potts model, q=3).

Original entry on oeis.org

1, 0, 0, -3, -9, -36, -123, -450, -1764, -6690, -26649, -104112, -421248, -1688337, -6888978, -28063296, -115459524, -475617330, -1970737233, -8184006855, -34118533647, -142565353488, -597406140090
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Crossrefs

A057391 Low-temperature susceptibility expansion for honeycomb net (Potts model, q=3).

Original entry on oeis.org

4, 24, 132, 672, 3192, 15996, 74396, 354936, 1639764, 7669876, 35282064, 162809928, 745459776, 3413032716, 15560103924, 70861321612, 321879751956, 1460223461700, 6612700085376, 29909912167920
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Crossrefs

A057395 Low-temperature susceptibility expansion for honeycomb net (Potts model, q=4).

Original entry on oeis.org

6, 36, 234, 1284, 6804, 38160, 198912, 1070316, 5499054, 29005692, 149318838, 776570508, 3987307152, 20560750344, 105345948384, 540305120844, 2761471319562, 14111436147228, 71964766006350, 366780011157360
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Crossrefs

Showing 1-10 of 33 results. Next