A057486 Numbers k such that x^k + x^m + 1 is factorable over GF(2) for all m between 1 and k.
8, 13, 16, 19, 24, 26, 27, 32, 37, 38, 40, 43, 45, 48, 50, 51, 53, 56, 59, 61, 64, 67, 69, 70, 72, 75, 77, 78, 80, 82, 83, 85, 88, 91, 96, 99, 101, 104, 107, 109, 112, 114, 115, 116, 117, 120, 122, 125, 128, 131, 133, 136, 138, 139, 141, 143, 144, 149, 152, 157
Offset: 1
Keywords
Examples
a(1) = 8 because x^8 + x^1 + 1 = (1 + x + x^2)*(1 + x^2 + x^3 + x^5 + x^6), x^8 + x^2 + 1 = (1 + x + x^4)^2, x^8 + x^3 + 1 = (1 + x + x^3)*(1 + x + x^2 + x^3 + x^5), x^8 + x^4 + 1 = (1 + x + x^2)^4, x^8 + x^5 + 1 = (1 + x^2 + x^3)*(1 + x^2 + x^3 + x^4 + x^5), x^8 + x^6 + 1 = (1 + x^3 + x^4)^2, and x^8 + x^7 + 1 = (1 + x + x^2)*(1 + x + x^3 + x^4 + x^6).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..5000 (first 200 terms from T. D. Noe)
- Richard Brent, The Software gf2x.
- Paul Zimmermann, There is no primitive trinomial of degree 57885161 over GF(2), posting to NMBRTHRY mailing list [alternate link]
- Index entries for sequences related to trinomials over GF(2)
Programs
-
Mathematica
Do[ k = 1; While[ ToString[ Factor[ x^n + x^k + 1, Modulus -> 2 ]] != ToString[ x^n + x^k + 1 ] && k < n, k++ ]; If[ k == n, Print[ n ]], {n, 2, 234} ]
-
PARI
is(n)=for(s=1,n\2,if(polisirreducible((x^n+x^s+1)*Mod(1,2)), return(0)));1 \\ Charles R Greathouse IV, May 30 2013
Comments