cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057486 Numbers k such that x^k + x^m + 1 is factorable over GF(2) for all m between 1 and k.

Original entry on oeis.org

8, 13, 16, 19, 24, 26, 27, 32, 37, 38, 40, 43, 45, 48, 50, 51, 53, 56, 59, 61, 64, 67, 69, 70, 72, 75, 77, 78, 80, 82, 83, 85, 88, 91, 96, 99, 101, 104, 107, 109, 112, 114, 115, 116, 117, 120, 122, 125, 128, 131, 133, 136, 138, 139, 141, 143, 144, 149, 152, 157
Offset: 1

Views

Author

Robert G. Wilson v, Sep 28 2000

Keywords

Comments

Brent, Hart, Kruppa, and Zimmermann found that 57885161 is a term of this sequence. - Charles R Greathouse IV, May 30 2013

Examples

			a(1) = 8 because
x^8 + x^1 + 1 = (1 + x + x^2)*(1 + x^2 + x^3 + x^5 + x^6),
x^8 + x^2 + 1 = (1 + x + x^4)^2,
x^8 + x^3 + 1 = (1 + x + x^3)*(1 + x + x^2 + x^3 + x^5),
x^8 + x^4 + 1 = (1 + x + x^2)^4,
x^8 + x^5 + 1 = (1 + x^2 + x^3)*(1 + x^2 + x^3 + x^4 + x^5),
x^8 + x^6 + 1 = (1 + x^3 + x^4)^2, and
x^8 + x^7 + 1 = (1 + x + x^2)*(1 + x + x^3 + x^4 + x^6).
		

Crossrefs

Complement of A073571. Cf. A001153, A002475, A073639.

Programs

  • Mathematica
    Do[ k = 1; While[ ToString[ Factor[ x^n + x^k + 1, Modulus -> 2 ]] != ToString[ x^n + x^k + 1 ] && k < n, k++ ]; If[ k == n, Print[ n ]], {n, 2, 234} ]
  • PARI
    is(n)=for(s=1,n\2,if(polisirreducible((x^n+x^s+1)*Mod(1,2)), return(0)));1 \\ Charles R Greathouse IV, May 30 2013