cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073571 Irreducible trinomials: numbers n such that x^n + x^k + 1 is an irreducible polynomial (mod 2) for some k with 0 < k < n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 44, 46, 47, 49, 52, 54, 55, 57, 58, 60, 62, 63, 65, 66, 68, 71, 73, 74, 76, 79, 81, 84, 86, 87, 89, 90, 92, 93, 94, 95, 97, 98, 100, 102, 103, 105, 106, 108, 110, 111, 113
Offset: 1

Views

Author

Paul Zimmermann, Sep 05 2002

Keywords

Comments

This sequence is infinite: Golomb, "Shift Register Sequences," on p. 96 (1st ed., 1966) states that "It is easy to exhibit an infinite class of irreducible trinomials. viz. x^(2*3^a) + x^(3^a) + 1 for all a = 0, 1, 2, ..., but whose roots have only 3^(a+1) as their period." - A. M. Odlyzko, Dec 05 1997.

References

  • S. W. Golomb, "Shift register sequence", revised edition, reprinted by Aegean Park Press, 1982. See Tables V-1, V-2.

Crossrefs

For the numbers of such trinomials for a given n, see A057646.
See A073726 for primitive trinomials and A001153 for primitive Mersenne trinomials (and references). Complement of A057486. For values of k see A057774.

Programs

  • Maple
    a := proc(n) local k; for k from 1 to n-1 do if Irreduc(x^n+x^k+1) mod 2 then RETURN(n) fi od; NULL end: [seq(a(n), n=1..130)];
  • Mathematica
    irreducibleQ[n_] := (irr = False; k = 1; While[k < n, If[ Factor[ x^n + x^k + 1, Modulus -> 2] == x^n + x^k + 1, irr = True; Break[]]; k++]; irr); Select[ Range[120], irreducibleQ] (* Jean-François Alcover, Jan 07 2013 *)
  • PARI
    is(n)=for(s=1,n-1,if(polisirreducible((x^n+x^s+1)*Mod(1,2)), return(1)));0 \\ Charles R Greathouse IV, May 30 2013

A001153 Degrees of primitive irreducible trinomials: n such that 2^n - 1 is a Mersenne prime and x^n + x^k + 1 is a primitive irreducible polynomial over GF(2) for some k with 0 < k < n.

Original entry on oeis.org

2, 3, 5, 7, 17, 31, 89, 127, 521, 607, 1279, 2281, 3217, 4423, 9689, 19937, 23209, 44497, 110503, 132049, 756839, 859433, 3021377, 6972593, 24036583, 25964951, 30402457, 32582657, 42643801, 43112609
Offset: 1

Views

Author

Keywords

Comments

Also the list of "irreducible Mersenne trinomials" since here irreducible implies primitive.
Further terms of the form +-3 (mod 8) are unlikely, as the only possibility of an irreducible trinomial for n == +-3 (mod 8) is (by Swan's theorem) x^n+x^2+1 (and its reciprocal); see the Ciet et al. and the Swan reference. - Joerg Arndt, Jan 06 2014
The first Mersenne prime exponent not ruled out by Swan's theorem and yet not a member of this sequence is 57885161. - Gord Palameta, Jul 20 2018
74207281 is also in the sequence. - Gord Palameta, Jul 20 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For smallest values of k, see A074743.

Extensions

Corrected and extended by Paul Zimmermann, Sep 05 2002
Six more terms from Brent's page added by Max Alekseyev, Oct 22 2011

A073639 Numbers k such that x^k + x + 1 is a primitive polynomial modulo 2.

Original entry on oeis.org

2, 3, 4, 6, 7, 15, 22, 60, 63, 127, 153, 471, 532, 865, 900, 1366
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A002475, which gives k for which the polynomial x^k + x + 1 is irreducible modulo 2. Term m of A002475 belongs to this sequence iff A046932(m) = 2^m - 1.
Note that a(16) = 1366 = A002475(23). For k = A002475(24) and A002475(25), polynomial x^k + x + 1 is not primitive modulo 2, so a(17) >= A002475(26) = 4495.
The following large terms of A002475 do not belong here: 53484, 62481, 83406, 103468. - Max Alekseyev, Aug 18 2015

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], PrimitivePolynomialQ[x^# + x + 1, 2] &] (* Robert Price, Sep 19 2018 *)

A344142 Lexicographically first irreducible polynomial over GF(2) of degree n with the lowest possible number of terms, evaluated at X = 2.

Original entry on oeis.org

2, 7, 11, 19, 37, 67, 131, 283, 515, 1033, 2053, 4105, 8219, 16417, 32771, 65579, 131081, 262153, 524327, 1048585, 2097157, 4194307, 8388641, 16777243, 33554441, 67108891, 134217767, 268435459, 536870917, 1073741827, 2147483657, 4294967437, 8589935617
Offset: 1

Views

Author

Jianing Song, May 10 2021

Keywords

Comments

Different from A344141, here you first check x^n + x + 1, x^n + x^2 + 1, ..., x^n + x^(n-1) + 1 until you get an irreducible polynomial over GF(2); if there are none, you then check x^n + x^3 + x^2 + x + 1, x^n + x^4 + x^2 + x + 1, x^n + x^4 + x^3 + x + 1, x^n + x^4 + x^3 + x^2 + 1, ..., x^n + x^(n-1) + x^(n-2) + x^(n-3) + 1 until you get an irreducible polynomial over GF(2). Once you find it, evaluate it at x = 2.
Note that it is conjectured that an irreducible polynomial of degree n with 5 terms exists for every n. It follows from the conjecture that A000120(a(n)) = 3 for n in A073571 and 5 for n in A057486.
In A057496 it is stated that if x^n + x^3 + x^2 + x + 1 is irreducible, then so is x^n + x^3 + 1. It follows that no term other than 19 can be of the form 2^n + 15.

Examples

			a(33) = 8589935617, since x^33 + x + 1, x^33 + x^2 + 1, x^33 + x^3 + 1, ..., x^33 + x^9 + 1 are all reducible over GF(2) and x^33 + x^10 + 1 is irreducible, so a(33) = 2^33 + 2^10 + 1 = 8589935617.
a(8) = 283, since x^8 + x + 1, x^8 + x^2 + 1, ..., x^8 + x^7 + 1 are all reducible over GF(2); both x^8 + x^3 + x^2 + x + 1, x^8 + x^4 + x^2 + x + 1 are reducible, and x^8 + x^4 + x^3 + x + 1 is irreducible, so a(8) = 2^8 + 2^4 + 2^3 + 2 + 1 = 283.
		

Crossrefs

Programs

  • PARI
    A344142(n) = if(n==1, 2, for(k=1, n-1, if(polisirreducible(Mod(x^n+x^k+1, 2)), return(2^n+2^k+1))); for(a=3, n-1, for(b=2, a-1, for(c=1, b-1, if(polisirreducible(Mod(x^n+x^a+x^b+x^c+1, 2)), return(2^n+2^a+2^b+2^c+1)))))) \\ Assuming that an irreducible polynomial of degree n with at most 5 terms exists for every n.
Showing 1-4 of 4 results.