cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A074743 Smallest k such that trinomial x^A001153(n) + x^k + 1 over GF(2) is primitive.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 38, 1, 32, 105, 216, 715, 67, 271, 84, 881, 1530, 8575, 25230, 7000, 215747, 170340, 361604, 3037958, 8412642, 880890, 2162059, 5110722, 55981, 3569337
Offset: 1

Views

Author

N. J. A. Sloane, Sep 06 2002

Keywords

Programs

  • Maple
    for n from 1 to 16 do for k from 1 to A001153(n)-1 do if(Primitive(x^A001153(n) + x^k + 1) mod 2)then printf("%d, ",k): break: fi:od:od: # Nathaniel Johnston, Apr 21 2011

Extensions

a(8)-a(16) from Nathaniel Johnston, Apr 21 2011
a(17)-a(30) from Brent's data added by Max Alekseyev, Oct 22 2011

A002475 Numbers k such that x^k + x + 1 is irreducible over GF(2).

Original entry on oeis.org

0, 2, 3, 4, 6, 7, 9, 15, 22, 28, 30, 46, 60, 63, 127, 153, 172, 303, 471, 532, 865, 900, 1366, 2380, 3310, 4495, 6321, 7447, 10198, 11425, 21846, 24369, 27286, 28713, 32767, 34353, 46383, 53484, 62481, 83406, 87382, 103468, 198958, 248833
Offset: 1

Views

Author

Keywords

Comments

k=1 is excluded since the polynomial "1" is not normally regarded as irreducible.
2^(A073639(m)) - 1 is a term for all m. - Joerg Arndt, Aug 23 2015
Any subsequent terms are > 300000. - Lucas A. Brown, Nov 28 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 975.

Crossrefs

Cf. A001153, A073639, A057496, A223938 (n such that x^n-x-1 is irreducible over GF(3)).

Programs

  • Magma
    P := PolynomialRing(GaloisField(2)); for n := 0 to 100000 do if IsIrreducible(x^n+x+1) then print(n); end if; end for;
    
  • Maple
    select(n -> Irreduc(x^n+x+1) mod 2, [0,$2..10000]); # Robert Israel, Aug 09 2015
  • Mathematica
    Do[ If[ ToString[ Factor[ x^n + x + 1, Modulus -> 2 ] ] == ToString[ x^n + x + 1 ], Print [ n ] ], {n, 0, 28713} ]
    Select[Range[1000], IrreduciblePolynomialQ[x^# + x + 1, Modulus -> 2] &] (* Robert Price, Sep 19 2018 *)
  • PARI
    for (n=1,10^6, if ( polisirreducible(Mod(1,2)*(x^n+x+1)), print1(n,", ") ) );
    /* Joerg Arndt, Apr 28 2012 */
    
  • PARI
    is(n)=if(n>3&&[1,0,1,1,0,1,0,0][n%8+1], return(0)); polisirreducible(Mod('x^n+'x+1,2)) \\ Charles R Greathouse IV, Jun 04 2015
  • SageMath
    P. = GF(2)[]
    for n in range(90):
           if (x^n+x+1).is_irreducible():
               print(n) # Ruperto Corso, Dec 11 2011
    

Extensions

Two more terms from Paul Zimmermann, Sep 05 2002
a(37)-a(39) from Max Alekseyev, Oct 29 2011
a(40)-a(41) from Ruperto Corso, Dec 11 2011
a(42) from Manfred Scheucher, Jun 04 2015
a(43) from Manfred Scheucher, Aug 09 2015
a(44) from Lucas A. Brown, Nov 28 2022

A073571 Irreducible trinomials: numbers n such that x^n + x^k + 1 is an irreducible polynomial (mod 2) for some k with 0 < k < n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 44, 46, 47, 49, 52, 54, 55, 57, 58, 60, 62, 63, 65, 66, 68, 71, 73, 74, 76, 79, 81, 84, 86, 87, 89, 90, 92, 93, 94, 95, 97, 98, 100, 102, 103, 105, 106, 108, 110, 111, 113
Offset: 1

Views

Author

Paul Zimmermann, Sep 05 2002

Keywords

Comments

This sequence is infinite: Golomb, "Shift Register Sequences," on p. 96 (1st ed., 1966) states that "It is easy to exhibit an infinite class of irreducible trinomials. viz. x^(2*3^a) + x^(3^a) + 1 for all a = 0, 1, 2, ..., but whose roots have only 3^(a+1) as their period." - A. M. Odlyzko, Dec 05 1997.

References

  • S. W. Golomb, "Shift register sequence", revised edition, reprinted by Aegean Park Press, 1982. See Tables V-1, V-2.

Crossrefs

For the numbers of such trinomials for a given n, see A057646.
See A073726 for primitive trinomials and A001153 for primitive Mersenne trinomials (and references). Complement of A057486. For values of k see A057774.

Programs

  • Maple
    a := proc(n) local k; for k from 1 to n-1 do if Irreduc(x^n+x^k+1) mod 2 then RETURN(n) fi od; NULL end: [seq(a(n), n=1..130)];
  • Mathematica
    irreducibleQ[n_] := (irr = False; k = 1; While[k < n, If[ Factor[ x^n + x^k + 1, Modulus -> 2] == x^n + x^k + 1, irr = True; Break[]]; k++]; irr); Select[ Range[120], irreducibleQ] (* Jean-François Alcover, Jan 07 2013 *)
  • PARI
    is(n)=for(s=1,n-1,if(polisirreducible((x^n+x^s+1)*Mod(1,2)), return(1)));0 \\ Charles R Greathouse IV, May 30 2013

A073726 Primitive irreducible trinomials: x^n + x^k + 1 is a primitive irreducible polynomial (mod 2) for some k with 0 < k < n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 15, 17, 18, 20, 21, 22, 23, 25, 28, 29, 31, 33, 35, 36, 39, 41, 47, 49, 52, 55, 57, 58, 60, 63, 65, 68, 71, 73, 79, 81, 84, 87, 89, 93, 94, 95, 97, 98, 100, 103, 105, 106, 108, 111, 113, 118, 119, 121, 123, 124, 127, 129, 130, 132, 134, 135, 137, 140, 142, 145, 148, 150, 151, 153, 159, 161, 167, 169, 170, 172, 174, 175, 177, 178, 183, 185, 191, 193, 194, 198, 199, 201
Offset: 1

Views

Author

Keywords

Comments

Start is similar to A194125; first terms here but missing there are 140, 212, 236.

References

  • S. W. Golomb, "Shift Register Sequences", revised edition, reprinted by Aegean Park Press, 1982. See Tables V-1, V-2.

Crossrefs

See A073571 for irreducible trinomials and A001153 for primitive Mersenne trinomials (and references). See A074744 for values of k.
Cf. A194125 (n such that x^n+(1+x)^w over GF(2) is primitive for some w).

Programs

  • Magma
    A073726 := function(n) for k := 1 to n-1 do if IsPrimitive(x^n+x^k+1) then return true; end if; end for; return false; end function; l := []; for n := 1 to 100 do if A073726(n) then l := Append(l,n); end if; end for; l;
  • Maple
    A073726 := proc(n) local k,m: option remember: if(n=1)then return 2: else m:=procname(n-1)+1: while(true)do for k from 1 to m-1 do if Primitive(x^m+x^k+1) mod 2 then return m: fi: od: m:=m+1: od: fi: end:
    seq(A073726(n),n=1..20); # Nathaniel Johnston, Apr 26 2011
  • Mathematica
    okQ[n_] := AnyTrue[Range[n-1], PrimitivePolynomialQ[x^n + x^# + 1, 2]&];
    Select[Range[201], okQ] (* Jean-François Alcover, Aug 19 2019 *)

Extensions

a(49)-a(58) from Nathaniel Johnston, Apr 26 2011

A057486 Numbers k such that x^k + x^m + 1 is factorable over GF(2) for all m between 1 and k.

Original entry on oeis.org

8, 13, 16, 19, 24, 26, 27, 32, 37, 38, 40, 43, 45, 48, 50, 51, 53, 56, 59, 61, 64, 67, 69, 70, 72, 75, 77, 78, 80, 82, 83, 85, 88, 91, 96, 99, 101, 104, 107, 109, 112, 114, 115, 116, 117, 120, 122, 125, 128, 131, 133, 136, 138, 139, 141, 143, 144, 149, 152, 157
Offset: 1

Views

Author

Robert G. Wilson v, Sep 28 2000

Keywords

Comments

Brent, Hart, Kruppa, and Zimmermann found that 57885161 is a term of this sequence. - Charles R Greathouse IV, May 30 2013

Examples

			a(1) = 8 because
x^8 + x^1 + 1 = (1 + x + x^2)*(1 + x^2 + x^3 + x^5 + x^6),
x^8 + x^2 + 1 = (1 + x + x^4)^2,
x^8 + x^3 + 1 = (1 + x + x^3)*(1 + x + x^2 + x^3 + x^5),
x^8 + x^4 + 1 = (1 + x + x^2)^4,
x^8 + x^5 + 1 = (1 + x^2 + x^3)*(1 + x^2 + x^3 + x^4 + x^5),
x^8 + x^6 + 1 = (1 + x^3 + x^4)^2, and
x^8 + x^7 + 1 = (1 + x + x^2)*(1 + x + x^3 + x^4 + x^6).
		

Crossrefs

Complement of A073571. Cf. A001153, A002475, A073639.

Programs

  • Mathematica
    Do[ k = 1; While[ ToString[ Factor[ x^n + x^k + 1, Modulus -> 2 ]] != ToString[ x^n + x^k + 1 ] && k < n, k++ ]; If[ k == n, Print[ n ]], {n, 2, 234} ]
  • PARI
    is(n)=for(s=1,n\2,if(polisirreducible((x^n+x^s+1)*Mod(1,2)), return(0)));1 \\ Charles R Greathouse IV, May 30 2013

A278572 Irregular triangle read by rows: row n lists values of k in range 1 <= k <= n/2 such x^n + x^k + 1 is irreducible (mod 2), or -1 if no such k exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 3, -1, 1, 4, 3, 2, 3, 5, -1, 5, 1, 4, 7, -1, 3, 5, 6, 3, 7, 9, -1, 3, 5, 2, 7, 1, 5, 9, -1, 3, 7, -1, -1, 1, 3, 9, 13, 2, 1, 9, 3, 6, 7, 13, -1, 10, 13, 7, 2, 9, 11, 15, -1, -1, 4, 8, 14, -1, 3, 20, 7, -1, 5, -1, 1, 5, 14, 20, 21, -1
Offset: 2

Views

Author

N. J. A. Sloane, Nov 27 2016

Keywords

Comments

This is the format used by John Brillhart (1968) and Zierler and Brillhart (1968).

Examples

			Triangle begins:
1,
1,
1,
2,
1, 3,
1, 3,
-1,
1, 4,
3,
2,
3, 5,
-1,
5,
1, 4, 7,
-1,
3, 5, 6,
...
		

References

  • Alanen, J. D., and Donald E. Knuth. "Tables of finite fields." Sankhyā: The Indian Journal of Statistics, Series A (1964): 305-328.
  • John Brillhart, On primitive trinomials (mod 2), unpublished Bell Labs Memorandum, 1968.
  • Marsh, Richard W. Table of irreducible polynomials over GF (2) through degree 19. Office of Technical Services, US Department of Commerce, 1957.

Crossrefs

Rows n that contain particular numbers: 1 (A002475), 2 (A057460), 3 (A057461), 4 (A057463), 5 (A057474), 6 (A057476), 7 (A057477), 8 (A057478), 9 (A057479), 10 (A057480), 11 (A057481), 12 (A057482), 13 (A057483).

Programs

  • Maple
    T:= proc(n) local L; L:= select(k -> Irreduc(x^n+x^k+1) mod 2, [$1..n/2]); if L = [] then -1 else op(L) fi
    end proc:
    map(T, [$2..100]); # Robert Israel, Mar 28 2017
  • Mathematica
    DeleteCases[#, 0] & /@ Table[Boole[IrreduciblePolynomialQ[x^n + x^# + 1, Modulus -> 2]] # & /@ Range[Floor[n/2]], {n, 2, 40}] /. {} -> {-1} // Flatten (* Michael De Vlieger, Mar 28 2017 *)

A278573 Irregular triangle read by rows: row n lists values of k in range 1 <= k <= n-1 such x^n + x^k + 1 is irreducible (mod 2), or -1 if no such k exists.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 3, 5, 1, 3, 4, 6, -1, 1, 4, 5, 8, 3, 7, 2, 9, 3, 5, 7, 9, -1, 5, 9, 1, 4, 7, 8, 11, 14, -1, 3, 5, 6, 11, 12, 14, 3, 7, 9, 11, 15, -1, 3, 5, 15, 17, 2, 7, 14, 19, 1, 21, 5, 9, 14, 18, -1, 3, 7, 18, 22, -1, -1, 1, 3, 9, 13, 15, 19, 25, 27, 2, 27, 1, 9, 21, 29, 3, 6, 7, 13
Offset: 2

Views

Author

N. J. A. Sloane, Nov 27 2016

Keywords

Comments

Row n (if it is not -1) is invariant under the map k -> n-k. - Robert Israel, Mar 14 2018

Examples

			Triangle begins:
1,
1, 2,
1, 3,
2, 3,
1, 3, 5,
1, 3, 4, 6,
-1,
1, 4, 5, 8,
3, 7,
2, 9,
3, 5, 7, 9,
-1,
5, 9,
1, 4, 7, 8, 11, 14,
-1,
3, 5, 6, 11, 12, 14,
3, 7, 9, 11, 15,
-1,
3, 5, 15, 17,
2, 7, 14, 19,
1, 21,
...
		

References

  • Alanen, J. D., and Donald E. Knuth. "Tables of finite fields." Sankhyā: The Indian Journal of Statistics, Series A (1964): 305-328.
  • John Brillhart, On primitive trinomials (mod 2), unpublished Bell Labs Memorandum, 1968.
  • Marsh, Richard W. Table of irreducible polynomials over GF (2) through degree 19. Office of Technical Services, US Department of Commerce, 1957.

Crossrefs

Programs

  • Maple
    for n from 2 to 30 do
      S:= select(k -> Irreduc(x^n+x^k+1) mod 2, [$1..n-1]);
      if S = [] then print(-1) else print(op(S)) fi
    od: # Robert Israel, Mar 14 2018

A291855 Numbers k such that gpf(2^k - 1) - 1 is not divisible by k.

Original entry on oeis.org

28, 52, 68, 92, 124, 156, 172, 244, 260, 308, 327, 340, 348, 356, 380, 396, 404, 428, 436, 500, 508, 516, 532, 580, 612, 644, 660, 684, 696, 724, 732, 748, 764, 780, 796, 820, 836, 908, 940, 980, 996, 1056, 1076, 1124, 1172, 1180
Offset: 1

Views

Author

Thomas Ordowski and Altug Alkan, Sep 04 2017

Keywords

Comments

For a(n) <= 10^3, all terms are divisible by 4 except 327 = 3*109.
Primes p such that 4*p is a term are 7, 13, 17, 23, 31, 43, 61, ...
From Thomas Ordowski, Sep 04 2017: (Start)
If p == +-1 (mod 8) and 2^p - 1 is prime, then 4*p is a term.
Conjecture: 4 * A001153(m) for m > 3 is a subsequence.
Primes q such that q-1 is a term are 29, 53, 157, 173, 349, 397, ... (End)

Examples

			28 is a term because gpf(2^28 - 1) == 15 (mod 28).
		

Crossrefs

Subsequence of A292199.

Extensions

a(10)-a(41) from Giovanni Resta, Sep 04 2017
a(42)-a(46) from Max Alekseyev, Sep 13 2017

A194125 n such that a length-n CLHCA of maximal period exists.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 15, 17, 18, 20, 21, 22, 23, 25, 28, 29, 31, 33, 35, 36, 39, 41, 47, 49, 52, 55, 57, 58, 60, 63, 65, 68, 71, 73, 79, 81, 84, 87, 89, 93, 94, 95, 97, 98, 100, 103, 105, 106, 108, 111, 113, 118, 119, 121, 123, 124, 127, 129, 130, 132, 134, 135, 137, 142, 145, 148, 150, 151, 153, 159, 161, 167, 169, 170, 172, 174, 175, 177, 178, 183, 185, 191, 193, 194, 198, 199, 201
Offset: 1

Views

Author

Joerg Arndt, Aug 15 2011

Keywords

Comments

A CLHCA is a cyclic linear hybrid cellular automaton (defined on p.883 of the Fxtbook, see link below). For fixed n its period depends only on the weight of its rule vector. The polynomial corresponding to a weight-w length-n CLHCA is x^n+(1+x)^w (or its reciprocal polynomial 1+x^w*(1+x)^(n-w)).
Sequence starts as A073726 (and appears to be a subset), first terms missing in this one are 140, 212, 236 (and no more <= 400).

Crossrefs

Cf. A073726 (n such that a primitive trinomial over GF(2) exists).
Showing 1-9 of 9 results.