cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001153 Degrees of primitive irreducible trinomials: n such that 2^n - 1 is a Mersenne prime and x^n + x^k + 1 is a primitive irreducible polynomial over GF(2) for some k with 0 < k < n.

Original entry on oeis.org

2, 3, 5, 7, 17, 31, 89, 127, 521, 607, 1279, 2281, 3217, 4423, 9689, 19937, 23209, 44497, 110503, 132049, 756839, 859433, 3021377, 6972593, 24036583, 25964951, 30402457, 32582657, 42643801, 43112609
Offset: 1

Views

Author

Keywords

Comments

Also the list of "irreducible Mersenne trinomials" since here irreducible implies primitive.
Further terms of the form +-3 (mod 8) are unlikely, as the only possibility of an irreducible trinomial for n == +-3 (mod 8) is (by Swan's theorem) x^n+x^2+1 (and its reciprocal); see the Ciet et al. and the Swan reference. - Joerg Arndt, Jan 06 2014
The first Mersenne prime exponent not ruled out by Swan's theorem and yet not a member of this sequence is 57885161. - Gord Palameta, Jul 20 2018
74207281 is also in the sequence. - Gord Palameta, Jul 20 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For smallest values of k, see A074743.

Extensions

Corrected and extended by Paul Zimmermann, Sep 05 2002
Six more terms from Brent's page added by Max Alekseyev, Oct 22 2011

A278572 Irregular triangle read by rows: row n lists values of k in range 1 <= k <= n/2 such x^n + x^k + 1 is irreducible (mod 2), or -1 if no such k exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 3, -1, 1, 4, 3, 2, 3, 5, -1, 5, 1, 4, 7, -1, 3, 5, 6, 3, 7, 9, -1, 3, 5, 2, 7, 1, 5, 9, -1, 3, 7, -1, -1, 1, 3, 9, 13, 2, 1, 9, 3, 6, 7, 13, -1, 10, 13, 7, 2, 9, 11, 15, -1, -1, 4, 8, 14, -1, 3, 20, 7, -1, 5, -1, 1, 5, 14, 20, 21, -1
Offset: 2

Views

Author

N. J. A. Sloane, Nov 27 2016

Keywords

Comments

This is the format used by John Brillhart (1968) and Zierler and Brillhart (1968).

Examples

			Triangle begins:
1,
1,
1,
2,
1, 3,
1, 3,
-1,
1, 4,
3,
2,
3, 5,
-1,
5,
1, 4, 7,
-1,
3, 5, 6,
...
		

References

  • Alanen, J. D., and Donald E. Knuth. "Tables of finite fields." Sankhyā: The Indian Journal of Statistics, Series A (1964): 305-328.
  • John Brillhart, On primitive trinomials (mod 2), unpublished Bell Labs Memorandum, 1968.
  • Marsh, Richard W. Table of irreducible polynomials over GF (2) through degree 19. Office of Technical Services, US Department of Commerce, 1957.

Crossrefs

Rows n that contain particular numbers: 1 (A002475), 2 (A057460), 3 (A057461), 4 (A057463), 5 (A057474), 6 (A057476), 7 (A057477), 8 (A057478), 9 (A057479), 10 (A057480), 11 (A057481), 12 (A057482), 13 (A057483).

Programs

  • Maple
    T:= proc(n) local L; L:= select(k -> Irreduc(x^n+x^k+1) mod 2, [$1..n/2]); if L = [] then -1 else op(L) fi
    end proc:
    map(T, [$2..100]); # Robert Israel, Mar 28 2017
  • Mathematica
    DeleteCases[#, 0] & /@ Table[Boole[IrreduciblePolynomialQ[x^n + x^# + 1, Modulus -> 2]] # & /@ Range[Floor[n/2]], {n, 2, 40}] /. {} -> {-1} // Flatten (* Michael De Vlieger, Mar 28 2017 *)

A278573 Irregular triangle read by rows: row n lists values of k in range 1 <= k <= n-1 such x^n + x^k + 1 is irreducible (mod 2), or -1 if no such k exists.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 3, 5, 1, 3, 4, 6, -1, 1, 4, 5, 8, 3, 7, 2, 9, 3, 5, 7, 9, -1, 5, 9, 1, 4, 7, 8, 11, 14, -1, 3, 5, 6, 11, 12, 14, 3, 7, 9, 11, 15, -1, 3, 5, 15, 17, 2, 7, 14, 19, 1, 21, 5, 9, 14, 18, -1, 3, 7, 18, 22, -1, -1, 1, 3, 9, 13, 15, 19, 25, 27, 2, 27, 1, 9, 21, 29, 3, 6, 7, 13
Offset: 2

Views

Author

N. J. A. Sloane, Nov 27 2016

Keywords

Comments

Row n (if it is not -1) is invariant under the map k -> n-k. - Robert Israel, Mar 14 2018

Examples

			Triangle begins:
1,
1, 2,
1, 3,
2, 3,
1, 3, 5,
1, 3, 4, 6,
-1,
1, 4, 5, 8,
3, 7,
2, 9,
3, 5, 7, 9,
-1,
5, 9,
1, 4, 7, 8, 11, 14,
-1,
3, 5, 6, 11, 12, 14,
3, 7, 9, 11, 15,
-1,
3, 5, 15, 17,
2, 7, 14, 19,
1, 21,
...
		

References

  • Alanen, J. D., and Donald E. Knuth. "Tables of finite fields." Sankhyā: The Indian Journal of Statistics, Series A (1964): 305-328.
  • John Brillhart, On primitive trinomials (mod 2), unpublished Bell Labs Memorandum, 1968.
  • Marsh, Richard W. Table of irreducible polynomials over GF (2) through degree 19. Office of Technical Services, US Department of Commerce, 1957.

Crossrefs

Programs

  • Maple
    for n from 2 to 30 do
      S:= select(k -> Irreduc(x^n+x^k+1) mod 2, [$1..n-1]);
      if S = [] then print(-1) else print(op(S)) fi
    od: # Robert Israel, Mar 14 2018
Showing 1-3 of 3 results.