A292559 Composite numbers m such that lpf(2^m - 1) == 1 (mod m).
169, 221, 323, 611, 779, 793, 923, 1121, 1159, 1271, 1273, 1343, 1349, 1513, 1717, 1829, 1919, 2033, 2077, 2201, 2413, 2533, 2603, 2759, 2951, 3097, 3131, 3173, 3193, 3281, 3379, 3599, 3721, 3743, 3791, 3937, 3953, 4043, 4223, 4309, 4331, 4369, 4607, 4619, 4811, 4867, 4883, 4981, 5111, 5177, 5263, 5429, 5567, 5699
Offset: 1
Programs
-
Mathematica
searchMax = 1000; Complement[Select[Range[searchMax], Mod[FactorInteger[2^# - 1][[1, 1]], #] == 1 &], Prime[Range[PrimePi[searchMax]]]] (* Alonso del Arte, Sep 19 2017 *)
-
PARI
lista(nn) = forcomposite(n=1, nn, sp = factor(2^n-1)[1,1]; if ((sp % n) == 1, print1(n, ", "))); \\ Michel Marcus, Sep 19 2017
Formula
A049479(m) == 1 (mod m).
Extensions
a(10)-a(54) from Charles R Greathouse IV, Sep 19 2017
Comments