cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057490 Numbers k that divide 8^k + 7^k + 6^k + 5^k + 4^k + 3^k + 2^k.

Original entry on oeis.org

1, 5, 7, 25, 35, 49, 125, 175, 245, 301, 343, 455, 625, 875, 1225, 1295, 1435, 1505, 1715, 1765, 2107, 2191, 2401, 3125, 4375, 6125, 7525, 8575, 10535, 11375, 12005, 12943, 14063, 14749, 15625, 16807, 21875, 22295, 30625, 35875, 37625, 42875, 52675, 60025, 64715, 70315, 73745, 78125, 80375, 84035, 90601, 93275
Offset: 1

Views

Author

Robert G. Wilson v, Sep 22 2000

Keywords

Comments

Contains A003595. The first term not in A003595 is 301. Is 1 the only term not divisible by 5 or 7? - Robert Israel, Feb 22 2017
No term is divisible by 3. 5 and 7 are the only primes in this sequence. - Altug Alkan, Feb 23 2017

Crossrefs

Cf. A003595.

Programs

  • Maple
    select(t -> add(i &^ t, i=2..8) mod t = 0, [$1..10^6]); # Robert Israel, Feb 22 2017
  • Mathematica
    Select[ Range[ 10^5 ], Mod[ PowerMod[ 8, #, # ] + PowerMod[ 7, #, # ] + PowerMod[ 6, #, # ] + PowerMod[ 5, #, # ] + PowerMod[ 4, #, # ] + PowerMod[ 3, #, # ] + PowerMod[ 2, #, # ], # ] == 0 & ]
    Select[Range[100000],Mod[Total[PowerMod[Range[2,8],#,#]],#]==0&] (* Harvey P. Dale, Jul 28 2021 *)