A057506 Signature-permutation of a Catalan Automorphism: (inverse of) "Donaghey's map M", acting on the parenthesizations encoded by A014486.
0, 1, 3, 2, 8, 6, 7, 5, 4, 22, 19, 20, 15, 14, 21, 16, 18, 13, 11, 17, 12, 10, 9, 64, 60, 61, 52, 51, 62, 53, 55, 41, 39, 54, 40, 38, 37, 63, 56, 57, 43, 42, 59, 47, 50, 36, 33, 48, 34, 29, 28, 58, 44, 49, 35, 30, 46, 32, 27, 25, 45, 31, 26, 24, 23, 196, 191, 192, 178, 177
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..23713
- A. Karttunen (et al) at OEIS Wiki, Maple implementations of CatalanRankGlobal, CatalanSequences, car, cdr, binexp2pars and pars2binexp functions
- A. Karttunen at OEIS WIki, Scheme implementations of CatalanRankSexp and CatalanUnrankSexp
- Indranil Ghosh, Python program for computing this sequence (after the functions mentioned in the OEIS wiki)
- Index entries for signature-permutations of Catalan automorphisms
Crossrefs
Inverse: A057505.
Cf. A057161, A057162, A057163, A057164, A057501, A057502, A057503, A057504 (for similar signature permutations of simple Catalan automorphisms).
Cf. A057507 (cycle counts).
The 2nd, 3rd, 4th, 5th and 6th "powers" of this permutation: A071662, A071664, A071666, A071668, A071670.
Row 12 of table A122287.
Programs
-
Maple
map(CatalanRankGlobal,map(DonagheysA057506,CatalanSequences(196))); # Where CatalanSequences(n) gives the terms A014486(0..n). DonagheysA057506 := n -> pars2binexp(deepreverse(DonagheysA057505(deepreverse(binexp2pars(n))))); DonagheysA057505 := h -> `if`((0 = nops(h)), h, [op(DonagheysA057505(car(h))), DonagheysA057505(cdr(h))]); # The following corresponds to automorphism A057164: deepreverse := proc(a) if 0 = nops(a) or list <> whattype(a) then (a) else [op(deepreverse(cdr(a))), deepreverse(a[1])]; fi; end; # The rest of required Maple-functions: see the given OEIS Wiki page.
-
Scheme
(define (A057506 n) (CatalanRankSexp (*A057506 (CatalanUnrankSexp n)))) (define (*A057506 bt) (let loop ((lt bt) (nt (list))) (cond ((not (pair? lt)) nt) (else (loop (cdr lt) (cons nt (*A057506 (car lt)))))))) ;; Functions CatalanRankSexp and CatalanUnrankSexp can be found at OEIS Wiki page.
Formula
Extensions
Entry revised by Antti Karttunen, May 30 2017
Comments