A057513 Number of separate orbits to which permutations given in A057511/A057512 (induced by deep rotation of general parenthesizations/plane trees) partition each A000108(n) objects encoded by A014486 between (A014138(n-1)+1)-th and (A014138(n))-th terms.
1, 1, 2, 4, 9, 21, 56, 153, 451, 1357, 4212, 13308, 42898, 140276, 465324, 1561955, 5300285, 18156813, 62732842, 218405402, 765657940
Offset: 0
Links
- A. Karttunen, Gatomorphisms (with the complete Scheme source)
- Index entries for sequences related to rooted trees
- A. Karttunen, C-program for computing empirically the initial terms of this sequence
Crossrefs
Programs
-
Maple
A057513 := proc(n) local i; `if`((0=n),1,(1/A003418(n-1))*add(A079216bi(n,i),i=1..A003418(n-1))); end; # Or empirically: DeepRotatePermutationCycleCounts := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,DeepRotateL(CatalanUnrank(n,r)))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end;
Formula
a(0)=1, a(n) = (1/A003418(n-1))*Sum_{i=1..A003418(n-1)} A079216(n, i) [Needs improvement.] - Antti Karttunen, Jan 03 2003
Comments