A057514 Number of peaks in mountain ranges encoded by A014486, number of leaves in the corresponding rooted plane trees (the root node is never counted as a leaf).
0, 1, 2, 1, 3, 2, 2, 2, 1, 4, 3, 3, 3, 2, 3, 2, 3, 3, 2, 2, 2, 2, 1, 5, 4, 4, 4, 3, 4, 3, 4, 4, 3, 3, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 4, 4, 3, 3, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 2, 1, 6, 5, 5, 5, 4, 5, 4, 5, 5, 4, 4, 4, 4, 3, 5, 4, 4, 4, 3, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3
Offset: 0
Keywords
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..3485
- Antti Karttunen, Gatomorphisms and other excursions ... (Includes Scheme program)
- Antti Karttunen, Newer version of the Scheme code collection
Crossrefs
Programs
-
Python
def a005811(n): return bin(n^(n>>1))[2:].count("1") def ok(n): # This function after Peter Luschny B=bin(n)[2:] if n!=0 else 0 s=0 for b in B: s+=1 if b=="1" else -1 if s<0: return 0 return s==0 def A(n): return [0] + [i for i in range(1, n + 1) if ok(i)] l=A(200) print([a005811(l[i])//2 for i in range(len(l))]) # Indranil Ghosh, May 21 2017
Comments