A057536 Minimal number of coins needed to pay n Euro-cents using the Euro currency.
0, 1, 1, 2, 2, 1, 2, 2, 3, 3, 1, 2, 2, 3, 3, 2, 3, 3, 4, 4, 1, 2, 2, 3, 3, 2, 3, 3, 4, 4, 2, 3, 3, 4, 4, 3, 4, 4, 5, 5, 2, 3, 3, 4, 4, 3, 4, 4, 5, 5, 1, 2, 2, 3, 3, 2, 3, 3, 4, 4, 2, 3, 3, 4, 4, 3, 4, 4, 5, 5, 2, 3, 3, 4, 4, 3, 4, 4, 5, 5, 3, 4, 4, 5, 5, 4, 5, 5, 6, 6, 3, 4, 4, 5, 5, 4, 5, 5, 6, 6, 1, 2, 2, 3, 3, 2
Offset: 0
Examples
a(57) = 3 because to pay 57 cents at least 3 coins are needed: 1 of 50 cents, 1 of 5 cents and 1 of 2 cents.
Links
Programs
-
Mathematica
Table[Min[Map[Total,FrobeniusSolve[{1,2,5,10,20,50,100,200,500,1000,2000,5000,10000,20000,50000},n]]],{n, 0, 105}] (* Joan Ludevid, Jun 15 2022 *) numCoins[n_]:=(amount = n; coins = {50000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100, 50, 20, 10, 5, 2, 1}; total=0; For[i = 1, i <= Length[coins], i++, total+=Quotient[amount, coins[[i]]]; amount = Mod[amount, coins[[i]]]]; total); Table[numCoins[n], {n, 0, 105}] (* Joan Ludevid, Jun 16 2022 *)
Formula
a(n) = floor(n/50000) + floor((n mod 50000)/20000) + floor(((n mod 50000) mod 20000)/10000) + ... + floor(((n mod 50000) mod 20000 ... mod 5)/2) + ((n mod 50000) mod 20000)... mod 2.
Extensions
a(0)=0 prepended by Alois P. Heinz, May 26 2015
Comments