cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A122237 a(n) = A057548(A082358(n)).

Original entry on oeis.org

1, 3, 8, 7, 22, 21, 18, 17, 20, 64, 63, 59, 58, 62, 50, 49, 46, 45, 48, 61, 57, 55, 54, 196, 195, 190, 189, 194, 176, 175, 171, 170, 174, 193, 188, 185, 184, 148, 147, 143, 142, 146, 134, 133, 130, 129, 132, 145, 141, 139, 138, 192, 187, 173, 169, 183, 181, 167
Offset: 0

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Crossrefs

Iterates: A106191, A122241, A122244. Cf. also A122227, A080067.

A083925 Inverse function of N -> N injection A057548.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 0, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 10, 0, 11, 12, 13, 0, 0, 0, 14, 15, 0, 16, 17, 18, 0, 19, 20, 21, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, May 13 2003

Keywords

Comments

a(1)=0 because A057548(0)=1, but a(n) = 0 also for those n which do not occur as values of A057548. All positive natural numbers occur here once.

Crossrefs

a(A057548(n)) = n for all n. Cf. A083926-A083929, A083935.

Formula

a(n) = A083923(n)*A072771(n).

A122227 a(n) = A057548(A057117(n)).

Original entry on oeis.org

1, 3, 7, 8, 17, 18, 21, 22, 20, 45, 46, 49, 50, 48, 58, 59, 63, 64, 62, 54, 55, 57, 61, 129, 130, 133, 134, 132, 142, 143, 147, 148, 146, 138, 139, 141, 145, 170, 171, 175, 176, 174, 189, 190, 195, 196, 194, 184, 185, 188, 193, 157, 158, 161, 162, 160, 169, 173
Offset: 0

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Crossrefs

A080067 a(n) = A057163(A057548(A057164(n))).

Original entry on oeis.org

1, 2, 5, 4, 13, 11, 12, 10, 9, 36, 33, 34, 29, 28, 35, 30, 32, 27, 25, 31, 26, 24, 23, 106, 102, 103, 94, 93, 104, 95, 97, 83, 81, 96, 82, 80, 79, 105, 98, 99, 85, 84, 101, 89, 92, 78, 75, 90, 76, 71, 70, 100, 86, 91, 77, 72, 88, 74, 69, 67, 87, 73, 68, 66, 65, 328, 323, 324
Offset: 0

Views

Author

Antti Karttunen, Jan 27 2003

Keywords

Crossrefs

Iterates starting from zero: A080068. Cf. A080070.

A083923 Characteristic function for A057548.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, May 13 2003

Keywords

Crossrefs

a(n) = A083924(A069770(n)). Used to compute A083925.

Formula

a(n) = 1 if A057515(n)=1 (equivalently: if A072772(n)=0), otherwise 0.

A057551 First differences of A057548.

Original entry on oeis.org

2, 4, 1, 9, 1, 2, 1, 1, 23, 1, 2, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 65, 1, 2, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 9, 1, 2, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 197, 1, 2, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 9, 1, 2, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 07 2000

Keywords

Crossrefs

Terms a(A014138[n]) seem to give A014137[n+2]. Cf. A057550.

A057505 Signature-permutation of a Catalan Automorphism: Donaghey's map M acting on the parenthesizations encoded by A014486.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 5, 6, 4, 22, 21, 18, 20, 17, 13, 12, 15, 19, 16, 10, 11, 14, 9, 64, 63, 59, 62, 58, 50, 49, 55, 61, 57, 46, 48, 54, 45, 36, 35, 32, 34, 31, 41, 40, 52, 60, 56, 43, 47, 53, 44, 27, 26, 29, 33, 30, 38, 39, 51, 42, 24, 25, 28, 37, 23, 196, 195, 190, 194, 189
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Comments

This is equivalent to map M given by Donaghey on page 81 of his paper "Automorphisms on ..." and also equivalent to the transformation procedure depicted in the picture (23) of Donaghey-Shapiro paper.
This can be also considered as a "more recursive" variant of A057501 or A057503 or A057161.

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees--History of Combinatorial Generation, vi+120pp. ISBN 0-321-33570-8 Addison-Wesley Professional; 1ST edition (Feb 06, 2006).

Crossrefs

Inverse: A057506.
The 2nd, 3rd, 4th, 5th and 6th "power": A071661, A071663, A071665, A071667, A071669.
Other related permutations: A057501, A057503, A057161.
Cycle counts: A057507. Maximum cycle lengths: A057545. LCM's of all cycles: A060114. See A057501 for other Maple procedures.
Row 17 of table A122288.
Cf. A080981 (the "primitive elements" of this automorphism), A079438, A079440, A079442, A079444, A080967, A080968, A080972, A080272, A080292, A083929, A080973, A081164, A123050, A125977, A126312.

Programs

  • Maple
    map(CatalanRankGlobal,map(DonagheysM, A014486)); or map(CatalanRankGlobal,map(DeepRotateTriangularization, A014486));
    DonagheysM := n -> pars2binexp(DonagheysMP(binexp2pars(n)));
    DonagheysMP := h -> `if`((0 = nops(h)),h,[op(DonagheysMP(car(h))),DonagheysMP(cdr(h))]);
    DeepRotateTriangularization := proc(nn) local n,s,z,w; n := binrev(nn); z := 0; w := 0; while(1 = (n mod 2)) do s := DeepRotateTriangularization(BinTreeRightBranch(n))*2; z := z + (2^w)*s; w := w + binwidth(s); z := z + (2^w); w := w + 1; n := floor(n/2); od; RETURN(z); end;

Formula

a(0) = 0, and for n>=1, a(n) = A085201(a(A072771(n)), A057548(a(A072772(n)))). [This recurrence reflects the S-expression implementation given first in the Program section: A085201 is a 2-ary function corresponding to 'append', A072771 and A072772 correspond to 'car' and 'cdr' (known also as first/rest or head/tail in some languages), and A057548 corresponds to unary form of function 'list'].
As a composition of related permutations:
a(n) = A057164(A057163(n)).
a(n) = A057163(A057506(A057163(n))).

A057501 Signature-permutation of a Catalan Automorphism: Rotate non-crossing chords (handshake) arrangements; rotate the root position of general trees as encoded by A014486.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 5, 4, 6, 17, 18, 20, 21, 22, 12, 13, 10, 9, 11, 15, 14, 16, 19, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 31, 32, 34, 35, 36, 26, 27, 24, 23, 25, 29, 28, 30, 33, 40, 41, 38, 37, 39, 43, 42, 44, 47, 52, 51, 53, 56, 60, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000; entry revised Jun 06 2014

Keywords

Comments

This is a permutation of natural numbers induced when "noncrossing handshakes", i.e., Stanley's interpretation (n), "n nonintersecting chords joining 2n points on the circumference of a circle", are rotated.
The same permutation is induced when the root position of plane trees (Stanley's interpretation (e)) is successively changed around the vertices.
For a good illustration how the rotation of the root vertex works, please see the Figure 6, "Rotation of an ordered rooted tree" in Torsten Mütze's paper (on page 24 in 20 May 2014 revision).
For yet another application of this permutation, please see the attached notes for A085197.
By "recursivizing" either the left or right hand side argument of A085201 in the formula, one ends either with A057161 or A057503. By "recursivizing" the both sides, one ends with A057505. - Antti Karttunen, Jun 06 2014

Crossrefs

Inverse: A057502.
Also, a "SPINE"-transform of A074680, and thus occurs as row 17 of A122203. (Also as row 65167 of A130403.)
Successive powers of this permutation, a^2(n) - a^6(n): A082315, A082317, A082319, A082321, A082323.
Cf. also A057548, A072771, A072772, A085201, A002995 (cycle counts), A057543 (max cycle lengths), A085197, A129599, A057517, A064638, A064640.

Programs

  • Maple
    map(CatalanRankGlobal,map(RotateHandshakes, A014486));
    RotateHandshakes := n -> pars2binexp(RotateHandshakesP(binexp2pars(n)));
    RotateHandshakesP := h -> `if`((0 = nops(h)),h,[op(car(h)),cdr(h)]); # This does the trick! In Lisp: (defun RotateHandshakesP (h) (append (car h) (list (cdr h))))
    car := proc(a) if 0 = nops(a) then ([]) else (op(1,a)): fi: end: # The name is from Lisp, takes the first element (head) of the list.
    cdr := proc(a) if 0 = nops(a) then ([]) else (a[2..nops(a)]): fi: end: # As well. Takes the rest (the tail) of the list.
    PeelNextBalSubSeq := proc(nn) local n,z,c; if(0 = nn) then RETURN(0); fi; n := nn; c := 0; z := 0; while(1 = 1) do z := 2*z + (n mod 2); c := c + (-1)^n; n := floor(n/2); if(c >= 0) then RETURN((z - 2^(floor_log_2(z)))/2); fi; od; end;
    RestBalSubSeq := proc(nn) local n,z,c; n := nn; c := 0; while(1 = 1) do c := c + (-1)^n; n := floor(n/2); if(c >= 0) then break; fi; od; z := 0; c := -1; while(1 = 1) do z := 2*z + (n mod 2); c := c + (-1)^n; n := floor(n/2); if(c >= 0) then RETURN(z/2); fi; od; end;
    pars2binexp := proc(p) local e,s,w,x; if(0 = nops(p)) then RETURN(0); fi; e := 0; for s in p do x := pars2binexp(s); w := floor_log_2(x); e := e * 2^(w+3) + 2^(w+2) + 2*x; od; RETURN(e); end;
    binexp2pars := proc(n) option remember; `if`((0 = n),[],binexp2parsR(binrev(n))); end;
    binexp2parsR := n -> [binexp2pars(PeelNextBalSubSeq(n)),op(binexp2pars(RestBalSubSeq(n)))];
    # Procedure CatalanRankGlobal given in A057117, other missing ones in A038776.

Formula

a(0) = 0, and for n>=1, a(n) = A085201(A072771(n), A057548(A072772(n))). [This formula reflects directly the given non-destructive Lisp/Scheme function: A085201 is a 2-ary function corresponding to 'append', A072771 and A072772 correspond to 'car' and 'cdr' (known also as first/rest or head/tail in some dialects), and A057548 corresponds to unary form of function 'list'].
As a composition of related permutations:
a(n) = A057509(A069770(n)).
a(n) = A057163(A069773(A057163(n))).
Invariance-identities:
A129599(a(n)) = A129599(n) holds for all n.

A080070 Decimal encoding of parenthesizations produced by simple iteration starting from empty parentheses and where each successive parenthesization is obtained from the previous by reflecting it as a general tree/parenthesization, then adding an extra stem below the root and then reflecting the underlying binary tree.

Original entry on oeis.org

0, 10, 1010, 101100, 10110010, 1011100100, 101100110100, 10111001001100, 1011100110100010, 101110011010011000, 10110011101001100010, 1011110010011011000100, 101100111011010001100100
Offset: 0

Views

Author

Antti Karttunen, Jan 27 2003

Keywords

Comments

Corresponding Lisp/Scheme S-expressions are (), (()), (()()), (()(())), (()(())()), (()((())())), (()(())(()())), ...
Conjecture: only the terms in positions 0,1,2 and 4 are symmetric, i.e., A057164(A080068(n)) = A080068(n) (equivalently: A036044(A080069(n)) = A080069(n)) only when n is one of {0,1,2,4}. If this is true, then the formula given in A079438 is exact. I (AK) have checked this up to n=404631 with no other occurrence of a symmetric (general) tree.

Examples

			This demonstrates how to get the fourth term 10110010 from the 3rd term 101100. The corresponding binary and general trees plus parenthesizations are shown. The first operation reflects the general tree, the second adds a new stem under the root and the third reflects the underlying binary tree, which induces changes on the corresponding general tree:
..............................................
.....\/................\/\/..........\/\/.....
......\/......\/\/......\/............\/......
.....\/........\/........\/..........\/.......
......(A057164).(A057548)..(A057163)..........
........................o.....................
........................|.....................
........o.....o.........o...o.........o.......
........|.....|..........\./..........|.......
....o...o.....o...o.......o.........o.o.o.....
.....\./.......\./........|..........\|/......
......*.........*.........*...........*.......
..[()(())]..[(())()]..[((())())]..[()(())()]..
...101100....110010....11100100....10110010...
		

Crossrefs

Compare to similar Wolframesque plots given in A122229, A122232, A122235, A122239, A122242, A122245. See also A079438, A080067, A080071, A057119.

Formula

a(n) = A007088(A080069(n)) = A063171(A080068(n)).

A127301 Matula-Goebel signatures for plane general trees encoded by A014486.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 6, 7, 5, 16, 12, 12, 14, 10, 12, 9, 14, 19, 13, 10, 13, 17, 11, 32, 24, 24, 28, 20, 24, 18, 28, 38, 26, 20, 26, 34, 22, 24, 18, 18, 21, 15, 28, 21, 38, 53, 37, 26, 37, 43, 29, 20, 15, 26, 37, 23, 34, 43, 67, 41, 22, 29, 41, 59, 31, 64, 48, 48, 56, 40, 48, 36
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

This sequence maps A000108(n) oriented (plane) rooted general trees encoded in range [A014137(n-1)..A014138(n)] of A014486 to A000081(n+1) distinct non-oriented rooted general trees, encoded by their Matula-Goebel numbers. The latter encoding is explained in A061773.
A005517 and A005518 give the minimum and maximum value occurring in each such range.
Primes occur at positions given by A057548 (not in order, and with duplicates), and similarly, semiprimes, A001358, occur at positions given by A057518, and in general, A001222(a(n)) = A057515(n).
If the signature-permutation of a Catalan automorphism SP satisfies the condition A127301(SP(n)) = A127301(n) for all n, then it preserves the non-oriented form of a general tree, which implies also that it is Łukasiewicz-word permuting, satisfying A129593(SP(n)) = A129593(n) for all n >= 0. Examples of such automorphisms include A072796, A057508, A057509/A057510, A057511/A057512, A057164, A127285/A127286 and A127287/A127288.
A206487(n) tells how many times n occurs in this sequence. - Antti Karttunen, Jan 03 2013

Examples

			A000081(n+1) distinct values occur each range [A014137(n-1)..A014138(n-1)]. As an example, A014486(5) = 44 (= 101100 in binary = A063171(5)), encodes the following plane tree:
.....o
.....|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(1) * A000040(A000040(1)) = 2*3 = 6, thus a(5)=6.
Likewise, A014486(6) = 50 (= 110010 in binary = A063171(6)) encodes the plane tree:
.o
.|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(A000040(1)) * A000040(1) = 3*2 = 6, thus a(6) is also 6, which shows these two trees are identical if one ignores their orientation.
		

Crossrefs

a(A014138(n)) = A007097(n+1), a(A014137(n)) = A000079(n+1) for all n.
a(|A106191(n)|) = A033844(n-1) for all n >= 1.
For standard instead of binary encoding we have A358506.
A000108 counts ordered rooted trees, unordered A000081.
A014486 lists binary encodings of ordered rooted trees.

Programs

  • Mathematica
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    binbalQ[n_]:=n==0||With[{dig=IntegerDigits[n,2]},And@@Table[If[k==Length[dig],SameQ,LessEqual][Count[Take[dig,k],0],Count[Take[dig,k],1]],{k,Length[dig]}]];
    bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]];
    Table[mgnum[bint[n]],{n,Select[Range[0,1000],binbalQ]}] (* Gus Wiseman, Nov 22 2022 *)
  • Scheme
    (define (A127301 n) (*A127301 (A014486->parenthesization (A014486 n)))) ;; A014486->parenthesization given in A014486.
    (define (*A127301 s) (if (null? s) 1 (fold-left (lambda (m t) (* m (A000040 (*A127301 t)))) 1 s)))

Formula

A001222(a(n)) = A057515(n) for all n.
Showing 1-10 of 30 results. Next