cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057590 Numbers of the form k*(k^3 +- 1)/2.

Original entry on oeis.org

0, 1, 7, 9, 39, 42, 126, 130, 310, 315, 645, 651, 1197, 1204, 2044, 2052, 3276, 3285, 4995, 5005, 7315, 7326, 10362, 10374, 14274, 14287, 19201, 19215, 25305, 25320, 32760, 32776, 41752, 41769, 52479, 52497, 65151, 65170, 79990, 80010, 97230, 97251, 117117
Offset: 1

Views

Author

N. J. A. Sloane, Oct 05 2000

Keywords

Comments

This sequence is also the integers k such that x^6 - 8*k*x^4 - 1 is reducible over the integers, and, for k > 0 such that the factors are two irreducible cubics. - James R. Buddenhagen, May 29 2010
Integer solutions of x + y = (x - y)^4. If x = a(n) then y = a(n - (-1)^n). - Thomas Scheuerle, Mar 06 2023

Programs

  • Maple
    map(k -> (k*(k^3-1)/2, k*(k^3+1)/2), [$1..100]); # Robert Israel, Apr 28 2015
  • PARI
    concat(0, Vec(-x^2*(x^4+6*x^3-2*x^2+6*x+1)/((x-1)^5*(x+1)^4) + O(x^100))) \\ Colin Barker, Apr 28 2015

Formula

G.f.: -x^2*(x^4+6*x^3-2*x^2+6*x+1) / ((x-1)^5*(x+1)^4). - Colin Barker, Apr 28 2015
From Robert Israel, Apr 28 2015: (Start)
a(n) = (2*n^4 + 4*n^3 + 6*n^2 + 4*n - 7)/64 + (-1)^n * (7 - 2*n - 2*n^2)*(1 + 2*n)/64.
a(n+8) - 4*a(n+6) + 6*a(n+4) - 4*a(n+2) + a(n) = 12. (End)