A057601 a(0) = a(1) = 1; a(n+1) is the number of partitions of n into parts a(k), 0 <= k <= n, each k occurring at most once.
1, 1, 2, 2, 4, 4, 6, 8, 10, 11, 12, 14, 17, 21, 25, 29, 33, 37, 43, 49, 54, 59, 66, 72, 80, 89, 98, 106, 116, 126, 137, 148, 161, 174, 187, 200, 216, 232, 248, 266, 284, 302, 321, 344, 367, 391, 414, 440, 465, 493, 523, 556, 584, 616, 650, 689, 726, 768, 808
Offset: 0
Keywords
Examples
a(6) = 6 because 5 = a(0) + a(4) = a(0) + a(5) = a(1) + a(4) = a(1) + a(5) = a(0) + a(2) + a(3) = a(1) + a(2) + a(3).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0, b(n, i-1)+`if`(a(i)>n, 0, b(n-a(i), i-1)))) end: a:= proc(n) a(n):= `if`(n<2, 1, b(n-1, n-1)) end: seq(a(n), n=0..70); # Alois P. Heinz, May 26 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 0, 0, b[n, i - 1] + If[a[i] > n, 0, b[n - a[i], i - 1]]]]; a[n_] := If[n < 2, 1, b[n - 1, n - 1]]; a /@ Range[0, 70] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
Extensions
More terms from Naohiro Nomoto, Oct 28 2001
Extended beyond a(45) by Alois P. Heinz, May 26 2013