cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057604 Primes of the form 4*k^2 + 163.

Original entry on oeis.org

163, 167, 179, 199, 227, 263, 307, 359, 419, 487, 563, 647, 739, 839, 947, 1063, 1187, 1319, 1459, 1607, 2099, 2467, 2663, 3079, 3299, 3527, 4007, 4259, 4519, 4787, 5347, 5639, 5939, 6247, 6563, 7219, 7559, 7907, 8263, 8627, 8999, 9767, 10163, 10567, 10979, 11399, 11827, 12263
Offset: 1

Views

Author

Tito Piezas III, Oct 08 2000

Keywords

Comments

These numbers are not prime in O_Q(sqrt(-163)). If p = n^2 + 163, then (n - sqrt(-163))*(n + sqrt(-163)) = p. - Alonso del Arte, Dec 18 2017

Crossrefs

Programs

  • Magma
    [a: n in [0..400] | IsPrime(a) where a is 4*n^2 + 163] // Vincenzo Librandi, Aug 07 2010
    
  • Mathematica
    Select[Table[4n^2 + 163, {n, 0, 70}], PrimeQ] (* Vincenzo Librandi, Jul 15 2012 *)
  • PARI
    lista(nn) = for(n=0, nn, my(p = 4*n^2 + 163); if(isprime(p), print1(p, ", "))) \\ Iain Fox, Dec 19 2017

Extensions

Sequence corrected by Vincenzo Librandi, Jul 15 2012