A057615 ATS: Add Then Sort (i.e., double previous term and then sort digits).
1, 2, 4, 8, 16, 23, 46, 29, 58, 116, 223, 446, 289, 578, 1156, 1223, 2446, 2489, 4789, 5789, 11578, 12356, 12247, 24449, 48889, 77789, 155578, 111356, 122227, 244445, 48889, 77789, 155578, 111356, 122227, 244445, 48889, 77789, 155578, 111356
Offset: 1
Examples
a(8)=29 since a(7)=46, 46 + 46 = 92 and 92 sorted is 29.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
Crossrefs
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Programs
-
Mathematica
NestList[FromDigits[Sort[IntegerDigits[2#]]]&,1,40] (* Harvey P. Dale, Oct 03 2011 *)
-
Python
from itertools import accumulate def ats(anm1, _): return int("".join(sorted(str(2*anm1)))) print(list(accumulate([1]*40, ats))) # Michael S. Branicky, Jul 17 2021
Formula
G.f.: x*(-219996*x^29 - 109980*x^28 - 99000*x^27 - 144000*x^26 - 72000*x^25 - 44100*x^24 - 21960*x^23 - 9801*x^22 - 11133*x^21 - 10422*x^20 - 5211*x^19 - 4500*x^18 - 2043*x^17 - 2223*x^16 - 1107*x^15 - 1098*x^14 - 549*x^13 - 243*x^12 - 423*x^11 - 207*x^10 - 108*x^9 - 54*x^8 - 27*x^7 - 45*x^6 - 23*x^5 - 16*x^4 - 8*x^3 - 4*x^2 - 2*x - 1)/(x^6 - 1). - Chai Wah Wu, Nov 20 2018
Comments