cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057619 Initial prime in first sequence of n primes congruent to 3 modulo 4.

Original entry on oeis.org

3, 7, 199, 199, 463, 463, 463, 36551, 39607, 183091, 241603, 241603, 241603, 9177431, 9177431, 95949311, 105639091, 341118307, 727334879, 727334879, 1786054147, 1786054147, 22964264027, 54870713243, 79263248027, 113391385603
Offset: 1

Views

Author

Robert G. Wilson v, Oct 09 2000

Keywords

Comments

The sequence is infinite, by Shiu's theorem. - Jonathan Sondow, Jun 22 2017

Examples

			a(13) = 241603 because this number is the first in a sequence of 13 consecutive primes all of the form 4n + 3.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", A4

Crossrefs

Programs

  • Mathematica
    NextPrime[ n_Integer ] := Module[ {k = n + 1}, While[ ! PrimeQ[ k ], k++ ]; Return[ k ] ]; PrevPrime[ n_Integer ] := Module[ {k = n - 1}, While[ ! PrimeQ[ k ], k-- ]; Return[ k ] ]; p = 0; Do[ a = Table[ -1, {n} ]; k = Max[ 1, p ]; While[ Union[ a ] != {3}, k = NextPrime[ k ]; a = Take[ AppendTo[ a, Mod[ k, 4 ] ], -n ] ]; p = NestList[ PrevPrime, k, n ]; Print[ p[ [ -2 ] ] ]; p = p[ [ -1 ] ], {n, 1, 18} ]
    With[{prs=Table[If[Mod[Prime[n],4]==3,1,0],{n,4646*10^6}]},Prime/@ Table[ SequencePosition[prs,PadRight[{},k,1],1][[1,1]],{k,26}]] (* The program will take a long time to run and requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 28 2017 *)

Extensions

More terms from Don Reble, Nov 16 2003
More terms from Jens Kruse Andersen, May 29 2006