A057620 Initial prime in first sequence of n consecutive primes congruent to 1 modulo 6.
7, 31, 151, 1741, 1741, 1741, 19471, 118801, 148531, 148531, 406951, 2339041, 2339041, 51662593, 51662593, 73451737, 232301497, 450988159, 1444257673, 1444257673, 1444257673, 24061965043, 24061965043, 43553959717, 43553959717
Offset: 1
Keywords
Examples
a(6) = 1741 because this number is the first in a sequence of 6 consecutive primes all of the form 3n + 1.
References
- R. K. Guy, "Unsolved Problems in Number Theory", A4
Links
- Giovanni Resta, Table of n, a(n) for n = 1..35 (terms < 4*10^14)
- J. K. Andersen, Consecutive Congruent Primes.
- D. K. L. Shiu, Strings of Congruent Primes, J. Lond. Math. Soc. 61 (2) (2000) 359-373 [MR1760689]
Programs
-
Mathematica
p = 0; Do[a = Table[-1, {n}]; k = Max[1, p]; While[Union[a] != {1}, k = NextPrime[k]; a = Take[AppendTo[a, Mod[k, 3]], -n]]; p = NestList[NextPrime[#, -1] &, k, n]; Print[p[[-2]]]; p = p[[-1]], {n, 1, 18}] (* Robert G. Wilson v, updated by Michael De Vlieger, Sep 03 2016 *) Table[k = 1; While[Total@ Boole@ Map[Mod[#, 6] == 1 &, NestList[NextPrime, Prime@ k, n - 1]] != n, k++]; Prime@ k, {n, 12}] (* Michael De Vlieger, Sep 03 2016 *)
-
PARI
m=c=o=0; forprime(p=1,, p%6 != 1 && (!c||!c=0) && next; c||o=p; c++>m||next; m++; print1(", ",o)) \\ M. F. Hasler, Sep 03 2016
Formula
a(n) <= A055625(n). - Zak Seidov, Aug 29 2016
Extensions
More terms from Don Reble, Nov 16 2003
More terms from Jens Kruse Andersen, May 30 2006
Definition clarified by Zak Seidov, Jun 19 2017
Comments