A057647 Number of walks of length n on the upper-right part of the hexagonal lattice.
1, 2, 9, 38, 185, 914, 4706, 24632, 131309, 708284, 3861380, 21225588, 117511456, 654474352, 3664017964, 20604973852, 116332926949, 659097637368, 3745842085016, 21348227213714, 121974246173946, 698499504058204
Offset: 0
Keywords
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..250
- C. Banderier, Analytic combinatorics of random walks and planar maps, PhD Thesis, 2001.
- Sean A. Irvine, Java program (github)
Formula
a(n) ~ (sqrt(3) - 1) * 2^n * 3^(n+1) / (Pi*n). - Vaclav Kotesovec, Apr 30 2024
Extensions
Title corrected by Sean A. Irvine, Jun 22 2022
Comments