A057704 Primorial - 1 prime indices: integers m such that the m-th primorial minus 1 is prime.
2, 3, 5, 6, 13, 24, 66, 68, 167, 287, 310, 352, 564, 590, 620, 849, 1552, 1849, 67132, 85586, 234725, 334023, 435582, 446895
Offset: 1
Examples
The 6th primorial is A002110(6) = 2*3*5*7*11*13 = 30030, and 30030 - 1 = 30029 is a prime, so 6 is in the sequence.
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
Links
- Chris K. Caldwell, Prime Pages: Database Search
- Chris K. Caldwell, The top 20: primorial primes
- SÃlvia Casacuberta, On the divisibility of binomial coefficients, arXiv:1906.07652 [math.NT], 2019. Mentions this sequence.
- Benny Lim, Prime Numbers Generated From Highly Composite Numbers, Parabola (2018) Vol. 54, Issue 3.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
- Eric Weisstein's World of Mathematics, Primorial Prime
- Wikipedia, Primorial prime
Crossrefs
Programs
-
Maple
P:= 1: p:= 1: count:= 0: for n from 1 to 1000 do p:= nextprime(p); P:= P*p; if isprime(P-1) then count:= count+1; A[count]:= n; fi od: seq(A[i],i=1..count); # Robert Israel, Dec 25 2014
-
Mathematica
a057704[n_] := Flatten@Position[ Rest[FoldList[Times, 1, Prime[Range[n]]]] - 1, Integer?PrimeQ]; a057704[500] (* _Michael De Vlieger, Dec 25 2014 *)
-
PARI
lista(nn) = {s = 1; for(k=1, nn, s *= prime(k); if(ispseudoprime(s - 1), print1(k, ", ")); ); } \\ Altug Alkan, Dec 08 2015
-
PARI
is(n) = ispseudoprime(prod(k=1, n, prime(k)) - 1); \\ Altug Alkan, Dec 08 2015
Extensions
Corrected by Holzer Werner, Nov 28 2002
a(19)-a(20) from Eric W. Weisstein, Dec 08 2015 (Mark Rodenkirch confirms based on saved log files that all p < 700,000 have been tested)
a(21) from Jeppe Stig Nielsen, Oct 19 2021
a(22)-a(24) from Jeppe Stig Nielsen, Dec 16 2024
Comments