cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057789 a(n) = Sum_{k = 1..n, gcd(k,n)=1} k*(n-k).

Original entry on oeis.org

0, 1, 4, 6, 20, 10, 56, 44, 84, 60, 220, 92, 364, 182, 280, 344, 816, 318, 1140, 520, 840, 770, 2024, 760, 2100, 1300, 2196, 1540, 4060, 1240, 4960, 2736, 3520, 2992, 4760, 2580, 8436, 4218, 5928, 4240, 11480, 3612, 13244, 6380, 8040, 7590, 17296, 6128
Offset: 1

Views

Author

Leroy Quet, Nov 04 2000

Keywords

Comments

Equal to convolution sum over positive integers, k, where k<=n and gcd(k,n)=1, except in first term, where the convolution sum is 1 instead of 0.

Examples

			Since 1, 3, 5 and 7 are relatively prime to 8 and are <= 8, a(8) = 1*(8-1) +3*(8-3) +5*(8-5) +7*(8-7) = 44.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local i;
      2*add(`if`(igcd(i,n)=1, i*(n-i),0),i=1..n/2)
    end proc:
    f(2):= 1:
    map(f, [$1..100]); # Robert Israel, Sep 29 2019
  • Mathematica
    a[n_] := 2 Sum[Boole[CoprimeQ[k, n]] k (n - k), {k, 1, n/2}];
    a[2] = 1;
    Array[a, 100] (* Jean-François Alcover, Aug 16 2020, after Maple *)
  • PARI
    a(n) = sum(k=1, n, if (gcd(n,k)==1, k*(n-k))); \\ Michel Marcus, Sep 29 2019

Formula

From Robert Israel, Sep 29 2019: (Start)
If n is prime, a(n) = A000292(n-1).
If n/2 is an odd prime, a(n) = A000292(n-2)/2.
If n/3 is a prime other than 3, a(n) = A000292(n-3)*2*n/(3*(n-2)). (End)
From Ridouane Oudra, Mar 21 2024: (Start)
a(n) = n*A023896(n) - A053818(n) ;
a(n) = (2/3)*(n*A023896(n) - A053819(n)/n) ;
a(n) = (n/6)*(A002618(n) - A023900(n)) ;
a(n) = (1/6)*(A053191(n) - n*A023900(n)). (End)
Sum_{k=1..n} a(k) ~ n^4 / (4*Pi^2). - Amiram Eldar, Apr 11 2024