A057823 Decimal expansion of q = 0.193072033..., which is the value of q which gives the maximum of the Dedekind eta function eta(q) := q^(1/12) * Product_{n>=1} (1 - q^(2n)) for q between 0 and 1.
1, 9, 3, 0, 7, 2, 0, 3, 3, 9, 5, 7, 4, 1, 0, 9, 7, 8, 9, 2, 2, 9, 4, 1, 6, 8, 5, 4, 2, 1, 2, 6, 2, 2, 5, 4, 5, 7, 0, 5, 0, 7, 7, 6, 0, 9, 7, 8, 7, 0, 4, 7, 2, 1, 6, 0, 9, 8, 0, 8, 9, 8, 9, 0, 7, 7, 7, 4, 6, 8, 4, 0, 5, 6, 7, 8, 7, 4, 9, 2, 5, 7, 0, 2, 8, 9, 6, 3, 9, 2, 7, 9, 3, 3, 6, 0, 8, 8, 0, 2
Offset: 0
Examples
0.19307203395741097892294168542126225457050776097870...
Links
- Eric Weisstein's World of Mathematics, Dedekind Eta Function.
Crossrefs
Cf. A211342.
Programs
-
Mathematica
RealDigits[FindRoot[D[q^(1/12)*Product[(1-q^(2 n)), {n, 100}], q] == 0, {q, 0.2}, WorkingPrecision -> 200][[1,2]]][[1]] q /. Last @ FindMaximum[ DedekindEta[ -I*Log[q]/Pi], {q, 1/5}, WorkingPrecision -> 200] // RealDigits[#][[1]][[1 ;; 100]]& (* Jean-François Alcover, Feb 05 2013 *) q0 = q /. FindMaximum[q^(1/12)*QPochhammer[q^2], {q, 1/5}, WorkingPrecision -> 200][[2]]; RealDigits[q0, 10, 100][[1]] (* Jean-François Alcover, Nov 25 2015 *)
Formula
Equals sqrt(A211342). - Vaclav Kotesovec, Jul 02 2017
Extensions
More terms from Vladeta Jovovic, Jun 19 2004