cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057823 Decimal expansion of q = 0.193072033..., which is the value of q which gives the maximum of the Dedekind eta function eta(q) := q^(1/12) * Product_{n>=1} (1 - q^(2n)) for q between 0 and 1.

Original entry on oeis.org

1, 9, 3, 0, 7, 2, 0, 3, 3, 9, 5, 7, 4, 1, 0, 9, 7, 8, 9, 2, 2, 9, 4, 1, 6, 8, 5, 4, 2, 1, 2, 6, 2, 2, 5, 4, 5, 7, 0, 5, 0, 7, 7, 6, 0, 9, 7, 8, 7, 0, 4, 7, 2, 1, 6, 0, 9, 8, 0, 8, 9, 8, 9, 0, 7, 7, 7, 4, 6, 8, 4, 0, 5, 6, 7, 8, 7, 4, 9, 2, 5, 7, 0, 2, 8, 9, 6, 3, 9, 2, 7, 9, 3, 3, 6, 0, 8, 8, 0, 2
Offset: 0

Views

Author

Peter L. Walker (peterw(AT)aus.ac.ae), Nov 24 2000

Keywords

Examples

			0.19307203395741097892294168542126225457050776097870...
		

Crossrefs

Cf. A211342.

Programs

  • Mathematica
    RealDigits[FindRoot[D[q^(1/12)*Product[(1-q^(2 n)), {n, 100}], q] == 0, {q, 0.2}, WorkingPrecision -> 200][[1,2]]][[1]]
    q /. Last @ FindMaximum[ DedekindEta[ -I*Log[q]/Pi], {q, 1/5}, WorkingPrecision -> 200] // RealDigits[#][[1]][[1 ;; 100]]&  (* Jean-François Alcover, Feb 05 2013 *)
    q0 = q /. FindMaximum[q^(1/12)*QPochhammer[q^2], {q, 1/5}, WorkingPrecision -> 200][[2]]; RealDigits[q0, 10, 100][[1]] (* Jean-François Alcover, Nov 25 2015 *)

Formula

Equals sqrt(A211342). - Vaclav Kotesovec, Jul 02 2017

Extensions

More terms from Vladeta Jovovic, Jun 19 2004