A057905 Positive integers that are not the sum of exactly four positive cubes.
1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Brennan Benfield and Oliver Lippard, Integers that are not the sum of positive powers, arXiv:2404.08193 [math.NT], 2024. p. 5.
- Eric Weisstein's World of Mathematics, Cubic Number
Crossrefs
Complement is A003327.
Programs
-
Mathematica
pr[n_] := Select[ PowersRepresentations[n, 4, 3], FreeQ[#, 0] &]; Select[ Range[90], pr[#] == {} &] (* Jean-François Alcover, Nov 08 2012 *)
-
PARI
list(lim)=my(v=List(),e=1+lim\1,x='x,t); t=sum(i=1,sqrtnint(e-4,3), x^i^3, O(x^e))^4; for(n=1,lim, if(polcoeff(t,n)==0, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2017
Comments