A057945 Number of triangular numbers needed to represent n with greedy algorithm.
0, 1, 2, 1, 2, 3, 1, 2, 3, 2, 1, 2, 3, 2, 3, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 2, 1, 2, 3, 2, 3, 4, 2, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 4, 3
Offset: 0
Keywords
Examples
a(35)=3 since 35=28+6+1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a057945 n = g n $ reverse $ takeWhile (<= n) $ tail a000217_list where g 0 _ = 0 g x (t:ts) = g r ts + a where (a,r) = divMod x t -- Reinhard Zumkeller, Mar 27 2011
-
Maple
A057945 := proc(n) local a,x; a := 0 ; x := n ; while x > 0 do x := x-A057944(x) ; a := a+1 ; end do: a ; end proc: # R. J. Mathar, May 13 2016
-
Mathematica
A057944[n_] := With[{k = Floor[Sqrt[8n+1]]}, Floor[(k-1)/2]* Floor[(k+1)/2]/2]; a[n_] := Module[{k = 0, x = n}, While[x>0, x = x - A057944[x]; k++]; k]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Mar 10 2019, after R. J. Mathar *)
Formula
a(0)=0, otherwise a(n)=a(A002262(n))+1.
Comments