A057972 Number of 5 X n binary matrices with 3 unit columns up to row and column permutations.
3, 31, 252, 1776, 11048, 61106, 303664, 1368844, 5651241, 21559133, 76613440, 255411923, 803771681, 2400633464, 6837010458, 18644075466, 48855805143, 123415815229, 301386128354, 713271875603, 1639572164669, 3667859207856
Offset: 3
Keywords
Links
Crossrefs
Formula
Number of 5 x n binary matrices with k unit columns up to row and column permutations is coefficient of x^k in (1/5!)*(Z(S_n; 27 + 5*x, 27 + 5*x^2, ...) + 10*Z(S_n; 13 + 3*x, 27 + 5*x^2, 13 + 3*x^3, 27 + 5*x^4, ...) + 15*Z(S_n; 7 + x, 27 + 5*x^2, 7 + x^3, 27 + 5*x^4, ...) + 20*Z(S_n; 6 + 2*x, 6 + 2*x^2, 27 + 5*x^3, 6 + 2*x^4, 6 + 2*x^5, 27 + 5*x^6, ...) + 20*Z(S_n; 4, 6 + 2*x^2, 13 + 3*x^3, 6 + 2*x^4, 4, 27 + 5*x^6, 4, 6 + 2*x^8, 13 + 3*x^9, 6 + 2*x^10, 4, 27 + 5*x^12, ...) + 30*Z(S_n; 3 + x, 7 + x^2, 3 + x^3, 27 + 5*x^4, 3 + x^5, 7 + x^6, 3 + x^7, 27 + 5*x^8, ...) + 24*Z(S_n; 2, 2, 2, 2, 27 + 5*x^5, 2, 2, 2, 2, 27 + 5*x^10, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.
G.f. : x^3/120*(35/(1 - x^1)^27 + 130/(1 - x^1)^13/(1 - x^2)^7 + 45/(1 - x^1)^7/(1 - x^2)^10 + 100/(1 - x^1)^6/(1 - x^3)^7 + 20/(1 - x^1)^4/(1 - x^2)^1/(1 - x^3)^3/(1 - x^6)^2 + 30/(1 - x^1)^3/(1 - x^2)^2/(1 - x^4)^5).
Comments