A058034 Number of numbers whose cube root rounds to n.
1, 3, 12, 27, 49, 75, 108, 147, 193, 243, 300, 363, 433, 507, 588, 675, 769, 867, 972, 1083, 1201, 1323, 1452, 1587, 1729, 1875, 2028, 2187, 2353, 2523, 2700, 2883, 3073, 3267, 3468, 3675, 3889, 4107, 4332, 4563, 4801, 5043, 5292, 5547, 5809, 6075, 6348
Offset: 0
Examples
a(2)=12 since the cube roots of 4, 5, 6, ..., 15 all lie between 1.5 and 2.5.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Crossrefs
Programs
-
Magma
[n mod 4 eq 0 select 3*n^2+1 else 3*n^2: n in [0..80]]; // Vincenzo Librandi, Dec 25 2015
-
Maple
seq(1 + floor((n+1/2)^3) - ceil((n-1/2)^3), n = 0 .. 100);
-
Mathematica
Table[SeriesCoefficient[-(3 x^5 + 6 x^4 + 6 x^3 + 7 x^2 + x + 1)/((x - 1)^3 (x + 1) (x^2 + 1)), {x, 0, n}], {n, 0, 46}] (* Michael De Vlieger, Dec 24 2015 *) LinearRecurrence[{2, -1, 0, 1, -2, 1}, {1, 3, 12, 27, 49, 75}, 50] (* Vincenzo Librandi, Dec 25 2015 *)
-
PARI
Vec(-(3*x^5+6*x^4+6*x^3+7*x^2+x+1)/((x-1)^3*(x+1)*(x^2+1)) + O(x^100)) \\ Colin Barker, Jul 04 2014
Formula
a(n) = 3n^2+1 if n == 0 (mod 4), 3n^2 otherwise.
a(n) = (1+(-1)^n+(-i)^n+i^n+12*n^2)/4 where i=sqrt(-1). - Colin Barker, Jul 04 2014
G.f.: -(3*x^5+6*x^4+6*x^3+7*x^2+x+1) / ((x-1)^3*(x+1)*(x^2+1)). - Colin Barker, Jul 04 2014