A058049 Numbers k such that the sum of the digits of the first k primes is a prime.
1, 2, 4, 5, 6, 7, 8, 11, 12, 14, 23, 33, 43, 45, 48, 64, 69, 72, 73, 77, 87, 94, 95, 96, 98, 110, 118, 124, 130, 133, 140, 148, 152, 154, 157, 162, 171, 174, 178, 181, 196, 200, 201, 206, 210, 212, 219, 232, 241, 244, 253, 257, 267, 269, 272, 277, 299, 304, 306
Offset: 1
Examples
5 is a term because sum of digits of first 5 primes, 2+3+5+7+(1+1)=19, is prime. a(5) = 6 because in A051351(6) = 2 + 3 + 5 + 7 + 2 (sum of eleven's digits) + 4 (sum of thirteen's digits) which equals the sum of the digits through the sixth prime = 23 which itself is a prime.
Links
- Z. Stankova-Frenkel and J. West, Explicit enumeration of 321,hexagon-avoiding permutations, arXiv:math/0106073 [math.CO], 2001.
Crossrefs
Programs
-
Mathematica
s = 0; Do[ s = s + Apply[ Plus, RealDigits[ Prime[ n ]] [[1]] ]; If[ PrimeQ[ s ], Print[ n ] ], {n, 1, 1000} ]
-
PARI
isok(n) = isprime(sum(k=1, n, sumdigits(prime(k)))); \\ Michel Marcus, Mar 11 2017
-
Python
from sympy import isprime, nextprime def sd(n): return sum(map(int, str(n))) def aupto(limit): alst, k, p, s = [], 1, 2, 2 while k <= limit: if isprime(s): alst.append(k) k += 1; p = nextprime(p); s += sd(p) return alst print(aupto(306)) # Michael S. Branicky, Jul 18 2021
Extensions
Edited by R. J. Mathar, Aug 04 2008
Comments