A058258 The 2-Up sequence: formed from final entries in rows of A058257.
1, 1, 1, 1, 3, 6, 26, 71, 413, 1456, 10576, 45541, 397023, 2020656, 20551376, 120686411, 1402815833, 9336345856, 122087570176, 908138776681, 13194844482843, 108480272749056, 1733786041150976, 15611712012050351, 272197308765744053, 2664103110372192256
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- J. M. Luck, On the frequencies of patterns of rises and falls, arXiv:1309.7764 [cond-mat.stat-mech], 2013-2014.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(t=2, b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o)) end: a:= n-> b(0, n, 0): seq(a(n), n=0..30); # Alois P. Heinz, Oct 02 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[If[t == 2, b[o-j, u+j-1, 1], b[u+j-1, o-j, t+1]], {j, 1, o}]] ;a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 03 2014, after Alois P. Heinz *) CoefficientList[Series[1 + ((Sin[x]-Cos[x]+1) * (Cosh[x]-1) + (Sin[x]+Cos[x]+1) * Sinh[x]) / ((1+Cosh[x]*Cos[x])),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 06 2014 *)
Formula
E.g.f. (J. M. Luck, 2013): 1 + ((sin(x) - cos(x) + 1) * (cosh(x)-1) + (sin(x) + cos(x) + 1) * sinh(x)) / ((1 + cosh(x)*cos(x))). - Vaclav Kotesovec, Sep 06 2014
a(n) ~ c * n! / r^n, where r = A076417 = 1.8751040687119611664453... is the root of the equation cosh(r)*cos(r) = -1, and c = 4*cot(r/2)/r = 1.56598351207925... if n is even, c = 4*cot(r/2)^2/r = 1.14958147083780... if n is odd. - Vaclav Kotesovec, Sep 06 2014
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Dec 12 2000