cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058258 The 2-Up sequence: formed from final entries in rows of A058257.

Original entry on oeis.org

1, 1, 1, 1, 3, 6, 26, 71, 413, 1456, 10576, 45541, 397023, 2020656, 20551376, 120686411, 1402815833, 9336345856, 122087570176, 908138776681, 13194844482843, 108480272749056, 1733786041150976, 15611712012050351, 272197308765744053, 2664103110372192256
Offset: 0

Views

Author

N. J. A. Sloane, Dec 06 2000

Keywords

Crossrefs

Column k=2 of A229892.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(t=2,
           b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
        end:
    a:= n-> b(0, n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 02 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[If[t == 2, b[o-j, u+j-1, 1], b[u+j-1, o-j, t+1]], {j, 1, o}]] ;a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 03 2014, after Alois P. Heinz *)
    CoefficientList[Series[1 + ((Sin[x]-Cos[x]+1) * (Cosh[x]-1) + (Sin[x]+Cos[x]+1) * Sinh[x]) / ((1+Cosh[x]*Cos[x])),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

E.g.f. (J. M. Luck, 2013): 1 + ((sin(x) - cos(x) + 1) * (cosh(x)-1) + (sin(x) + cos(x) + 1) * sinh(x)) / ((1 + cosh(x)*cos(x))). - Vaclav Kotesovec, Sep 06 2014
a(n) ~ c * n! / r^n, where r = A076417 = 1.8751040687119611664453... is the root of the equation cosh(r)*cos(r) = -1, and c = 4*cot(r/2)/r = 1.56598351207925... if n is even, c = 4*cot(r/2)^2/r = 1.14958147083780... if n is odd. - Vaclav Kotesovec, Sep 06 2014

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 12 2000