cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058290 Rounded difference between 10^n/(log(10^n) - A) and pi(10^n), where A is Legendre's constant and pi is the prime counting function.

Original entry on oeis.org

-1, 4, 3, 4, 2, -4, 45, 561, 6549, 69985, 690493, 6545056, 60615397, 555560046, 5070271362, 46223804313, 421692578206, 3853431791690, 35289854434775, 323979090116197, 2981921009910364, 27516571651291205, 254562416350667928
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

Legendre's constant is 1.08366 (A228211). - Alonso del Arte, Nov 02 2013
This sequence has historical rather than mathematical interest, cf. A228211. It is better to use 1 + 1/log(10^n) instead of A. Since A is given to only 5 decimal places, it does not make much sense to compute terms of this sequence beyond n ~ 10. For n = 9, the error a(9)/A006880(9) is about 0.14%, while the error for 1 + 1/log(10^9) instead of A is only about 0.04%. - M. F. Hasler, Dec 03 2018

References

  • Jan Gullberg, "Mathematics, From the Birth of Numbers", W. W. Norton and Company, NY and London, 1997, page 81.

Crossrefs

Programs

  • Mathematica
    Table[ Round[ 10^n /(Log[10^n] - 1.08366) - PrimePi[10^n] ], {n, 0, 13} ]
  • PARI
    {A006880_vec = [0, 4, 25, 168, 1229, 9592, 78498, 664579, 5761455, 50847534, 455052511 4118054813, 37607912018, 346065536839, 3204941750802, 29844570422669, 279238341033925, 2623557157654233, 24739954287740860, 234057667276344607, 2220819602560918840, 21127269486018731928, 201467286689315906290, 1925320391606803968923]} \\ Edited by M. F. Hasler, Dec 03 2018
    {default(realprecision, 100); t=log(10); for (n=0, 23, write("b058290.txt", n, " ", round(10^n/(n*t - 1.08366)) - A006880_vec[n+1]))} \\ Harry J. Smith, Jun 22 2009
    
  • PARI
    A058290(n)={10^n\/(n*log(10)-1.08366)-A006880(n)} \\ with A006880(n)=primepi(10^n) and/or precomputed values for n > 10. - M. F. Hasler, Dec 03 2018

Formula

a(n) = round(10^n/(log(10^n) - 1.08366)) - A006880(n). - M. F. Hasler, Dec 03 2018

Extensions

More terms from Harry J. Smith, Jun 22 2009