cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058292 Continued fraction for e^(Pi*sqrt(163)).

Original entry on oeis.org

262537412640768743, 1, 1333462407511, 1, 8, 1, 1, 5, 1, 4, 1, 7, 1, 1, 1, 9, 1, 1, 2, 12, 4, 1, 15, 4, 299, 3, 5, 1, 4, 5, 5, 1, 28, 3, 1, 9, 4, 1, 6, 1, 1, 1, 1, 1, 1, 51, 11, 5, 3, 2, 1, 1, 1, 1, 2, 1, 5, 1, 9, 1, 2, 14, 1, 82, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

The real number e^(pi*sqrt(163)) ~ a(0)+1-1/a(2) (cf also the Example section) is called Ramanujan's constant: See the main entry A060295 for further information. - M. F. Hasler, Jan 26 2014

Examples

			e^(Pi*Sqrt(163)) = 262537412640768743.99999999999925007259719818568887935385...
		

References

  • Flajolet, Philippe, and Brigitte VallĂ©e. "Continued fractions, comparison algorithms, and fine structure constants." Constructive, Experimental, and Nonlinear Analysis 27 (2000): 53-82. See Fig. 3.
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 179.

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[ E^(Pi*Sqrt[163]), 100 ]
  • PARI
    default(realprecision,99);contfrac(exp(Pi*sqrt(163))) \\ With standard precision (38 digits), contfrac() returns only [a(0)+1]. - M. F. Hasler, Jan 26 2014