A058300 Number of ways of piling up n wine bottles above a row of n+1 bottles at ground level.
1, 1, 1, 3, 7, 16, 43, 115, 303, 813, 2203, 5991, 16371, 44917, 123598, 340988, 942930, 2612735, 7252407, 20163046, 56136326, 156488946, 436739752, 1220157514, 3412116339, 9550192161, 26751643663, 74991516850, 210364915858, 590490257667, 1658484275955
Offset: 0
Examples
a(4) = 7: the seven possibilities are: ..............0.............0.........0...............0.........0............0 .0.0.0.0.....0.0.0.......0.0.0.......0.0...0.....0...0.0.......0.0.0......0.0.0 0.0.0.0.0.,.0.0.0.0.0.,.0.0.0.0.0.,.0.0.0.0.0.,.0.0.0.0.0.,.0.0.0.0.0,.0.0.0.0.0
References
- R. P. Stanley, Enumerative Combinatorics (Volume 2); see Exercise 6.19(hhh).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..600
- Andrew M. Odlyzko and Herbert S. Wilf, The editor's corner: n coins in a fountain, Amer. Math. Monthly, 95 (1988), 840-843.
Crossrefs
Cf. A047998.
Programs
-
Mathematica
terms = 31; initialMax = 5; Clear[g]; g[max_] := g[max] = (Print["max = ", max]; f = 1/Fold[1 - y*x^#2/#1&, 1, Range[max] // Reverse]; b[n_, k_] := SeriesCoefficient[f, {x, 0, n}, {y, 0, k}]; b[0, 0] = 1; Clear[a]; a[n_] := a[n] = b[2n+1, n+1]; Array[a, terms, 0]); g[max = initialMax]; g[max = max+1]; While[g[max] != g[max-1], max = max+1]; A058300 = g[max] (* Jean-François Alcover, Oct 05 2017, after Alois P. Heinz's formula *)
Formula
Coefficient of w^(2*n+1)*z^(n+1) in the formal power series G(w, z) defined by G(w, z)=1+w*z*G(w, w*z).
a(n) = A047998(2n+1,n+1). - Alois P. Heinz, Jun 24 2015
a(n) ~ c * d^n / sqrt(n), where d = 2.8566122635122125634030051... and c = 0.19212135026441477122126... - Vaclav Kotesovec, Jul 17 2019
Extensions
More terms from Alois P. Heinz, Jun 24 2015
Comments