A058303 Decimal expansion of the imaginary part of the first nontrivial zero of the Riemann zeta function.
1, 4, 1, 3, 4, 7, 2, 5, 1, 4, 1, 7, 3, 4, 6, 9, 3, 7, 9, 0, 4, 5, 7, 2, 5, 1, 9, 8, 3, 5, 6, 2, 4, 7, 0, 2, 7, 0, 7, 8, 4, 2, 5, 7, 1, 1, 5, 6, 9, 9, 2, 4, 3, 1, 7, 5, 6, 8, 5, 5, 6, 7, 4, 6, 0, 1, 4, 9, 9, 6, 3, 4, 2, 9, 8, 0, 9, 2, 5, 6, 7, 6, 4, 9, 4, 9, 0, 1, 0, 3, 9, 3, 1, 7, 1, 5, 6, 1, 0, 1, 2, 7, 7, 9, 2
Offset: 2
Examples
14.1347251417346937904572519835624702707842571156992...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.15.3, p. 138.
- S. Wagon, "Mathematica In Action," W. H. Freeman and Company, NY, 1991, page 361.
Links
- Iain Fox, Table of n, a(n) for n = 2..20000
- P. J. Forrester and A. Mays, Finite size corrections in random matrix theory and Odlyzko's data set for the Riemann zeros, arXiv preprint arXiv:1506.06531 [math-ph], 2015.
- P. J. Forrester and A. Mays, Finite size corrections in random matrix theory and Odlyzko's data set for the Riemann zeros, Proceedings of the Royal Society A, Vol: 471, Issue: 2182, 2015.
- Fredrik Johansson, The first nontrivial zero to over 300000 decimal digits.
- Andrew M. Odlyzko, The first 100 (non trivial) zeros of the Riemann Zeta function, to over 1000 decimal digits each, AT&T Labs - Research.
- Andrew M. Odlyzko, Tables of zeros of the Riemann zeta function.
- Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros.
- Eric Weisstein's World of Mathematics, Xi-Function.
- Index entries for zeta function.
Crossrefs
Programs
-
Maple
Digits:= 150; Re(fsolve(Zeta(1/2+I*t)=0, t=14.13)); # Iaroslav V. Blagouchine, Jun 24 2016
-
Mathematica
FindRoot[ Zeta[1/2 + I*t], {t, 14 + {-.3, +.3}}, AccuracyGoal -> 100, WorkingPrecision -> 120] RealDigits[N[Im[ZetaZero[1]], 100]][[1]] (* Charles R Greathouse IV, Apr 09 2012 *) (* The following numerical integral takes about 9 minutes to compute *)Clear[n, t, gamma]; gamma = 1; numberofzetazeros = 1; Quiet[Do[gamma = N[NIntegrate[(1/2)*(1 - Sign[(RiemannSiegelTheta[t] + Im[Log[Zeta[I*t + 1/2]]])/Pi - n + 3/2]), {t, 0, gamma + 15}, PrecisionGoal -> 110, MaxRecursion -> 350, WorkingPrecision -> 120], 105]; Print[gamma], {n, 1, numberofzetazeros}]]; RealDigits[gamma][[1]] (* Mats Granvik, Feb 15 2017 *)
-
PARI
solve(x=14,15,imag(zeta(1/2+x*I))) \\ Charles R Greathouse IV, Feb 26 2012
-
PARI
lfunzeros(1,15)[1] \\ Charles R Greathouse IV, Mar 07 2018
Formula
zeta(1/2 + i*14.1347251417346937904572519836...) = 0.
Comments