cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058306 Denominator of H(n), where H(0)=-1/12, H(n) = number of equivalence classes of positive definite quadratic forms a*x^2+b*x*y+c*y^2 with discriminant b^2-4ac = -n, counting forms equivalent to x^2+y^2 (resp. x^2+x*y+y^2) with multiplicity 1/2 (resp. 1/3).

Original entry on oeis.org

12, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 09 2000

Keywords

Comments

H(n) is usually called the Hurwitz class number.
a(n) = 1 unless n is of the form 3k^2 or 4k^2. - Charles R Greathouse IV, Apr 25 2013

Examples

			-1/12, 0, 0, 1/3, 1/2, 0, 0, 1, 1, ...
		

References

  • D. Zagier, The Eichler-Selberg Trace Formula on SL_2(Z), Appendix to S. Lang, Introduction to Modular Forms, Springer, 1976.

Crossrefs

Programs

  • Mathematica
    terms = 100; gf[m_] := With[{r = Range[-m, m]}, -2 Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, r}]/EllipticTheta[3, 0, x] - 2 Sum[(-1)^k*x^(k^2 + 2 k)/(1 + x^(2k))^2, {k, r}]/EllipticTheta[3, 0, -x]]; CoefficientList[ gf[terms // Sqrt // Ceiling] + O[x]^terms, x]/12 // Denominator (* Jean-François Alcover, Apr 02 2017, after Michael Somos *)
  • PARI
    H(n)=sumdiv(core(n,1)[2],d,my(D=-n/d^2);if(D%4<2,qfbclassno(D)/max(1,D+6)))
    a(n)=if(n,denominator(H(n)),12) \\ Charles R Greathouse IV, Apr 25 2013
    
  • PARI
    a(n)=if(n,my(D=4-valuation(n,3)%2);denominator(if(issquare(n/D) && n%D==0, qfbclassno(-D)/max(1,6-D))),12) \\ Charles R Greathouse IV, Apr 25 2013
    
  • PARI
    {a(n) = denominator( qfbhclassno( n))}; /* Michael Somos, Jul 06 2015 */

Formula

H(n) = A259825(n) / 12. - Michael Somos, Jul 05 2015