A058360 Number of partitions of n whose reciprocal sum is an integer.
1, 1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 19, 23, 25, 31, 33, 38, 42, 51, 57, 66, 75, 86, 97, 109, 122, 138, 155, 177, 200, 230, 253, 287, 320, 363, 405, 456, 507, 572, 639, 707, 785, 877, 971, 1079, 1198, 1334, 1476, 1635, 1802, 2002, 2213, 2445, 2700
Offset: 1
Keywords
Examples
a(12) = 7 because the partitions of 12 whose reciprocal sum is an integer are: {{6, 3, 2, 1}, {4, 4, 2, 1, 1}, {3, 3, 3, 1, 1, 1}, {2, 2, 2, 2, 2, 2}, {2, 2, 2, 2, 1, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}. Individually their reciprocal sums are: 2, 3, 4, 3, 6, 9 and 12.
References
- From a question posted to the news group comp.soft-sys.math.mathematica by "Juan" (erfa11(AT)hotmail.com) at Steven M. Christensen and Associates, Inc. and MathTensor, Inc. Jan 22, 2002 08:46:57 +0000 (UTC).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..80
Programs
-
Mathematica
(* first do *) << "Combinatorica`"; (* then *) f[n_] := Block[{c = i = 0, k = PartitionsP@n, p = {n}}, While[i < k, If[ IntegerQ[ Plus @@ (1/p)], c++ ]; i++; p = NextPartition@ p]; c]; Array[f, 61] Table[Count[IntegerPartitions[n],?(IntegerQ[Total[1/#]]&)],{n,70}] (* _Harvey P. Dale, Sep 10 2022 *)
-
PARI
a(n)=my(s); forpart(v=n,if(type(sum(i=1,#v,1/v[i]))=="t_INT",s++)); s \\ Charles R Greathouse IV, Dec 15 2020
-
PARI
b(n)=if(n<4,return(n==0)); my(s); forpart(v=n, if(type(sum(i=1, #v, 1/v[i]))=="t_INT", s++), [2,n]); s a(n)=my(s=1); vector(n,i,s+=b(i)) \\ Charles R Greathouse IV, Dec 15 2020
Comments