cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A066824 Sum of the reciprocals of the partitions of n enumerated in A058360.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 15, 19, 24, 30, 39, 48, 58, 69, 84, 100, 120, 142, 171, 200, 237, 275, 323, 372, 437, 505, 589, 678, 787, 904, 1042, 1189, 1365, 1557, 1785, 2031, 2327, 2638, 3009, 3405, 3875, 4376, 4970, 5610, 6356, 7166, 8081, 9082, 10225, 11469
Offset: 1

Views

Author

Robert G. Wilson v, Jan 25 2002

Keywords

Examples

			a(12) = 39 because the partitions of 12 whose reciprocal sum is an integer are: {{6, 3, 2, 1}, {4, 4, 2, 1, 1}, {3, 3, 3, 1, 1, 1}, {2, 2, 2, 2, 2, 2}, {2, 2, 2, 2, 1, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}. Individually their reciprocal sums are: 2, 3, 4, 3, 6, 9 and 12 which together equals 39.
		

References

  • From a question posted to the news group comp.soft-sys.math.mathematica by "Juan" (erfa11(AT)hotmail.com) at Steven M. Christensen and Associates, Inc and MathTensor, Inc. Jan 22 2002 08:46:57 +0000 (UTC).

Programs

A051908 Number of ways to express 1 as the sum of unit fractions such that the sum of the denominators is n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 3, 0, 1, 1, 1, 1, 2, 3, 2, 2, 1, 2, 2, 2, 4, 5, 5, 2, 4, 5, 5, 9, 4, 4, 6, 4, 4, 7, 8, 4, 10, 9, 9, 11, 8, 13, 13, 15, 16, 21, 18, 16, 22, 19, 18, 30, 24, 19, 26, 28, 26, 29, 35, 29, 44, 28, 47, 48
Offset: 1

Views

Author

Jud McCranie, Dec 16 1999

Keywords

Comments

Also the number of partitions of n whose reciprocal sums to 1; "exact partitions". - Robert G. Wilson v, Sep 30 2009

Examples

			1 = 1/2 + 1/2, the sum of denominators is 4, and this is the only expression of 1 as unit fractions with denominator sum 4, so a(4)=1.
The a(22) = 3 partitions whose reciprocal sum is 1 are (12,4,3,3), (10,5,5,2), (8,8,4,2). - _Gus Wiseman_, Jul 16 2018
		

References

  • Derrick Niederman, "Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed", a Perigee Book, Penguin Group, NY, 2009, pp. 82-83. [From Robert G. Wilson v, Sep 30 2009]

Crossrefs

A028229 lists n such that a(n)=0.

Programs

  • Mathematica
    (* first do *) << "Combinatorica`"; (* then *) f[n_] := Block[{c = i = 0, k = PartitionsP@n, p = {n}}, While[i < k, If[1 == Plus @@ (1/p), c++ ]; i++; p = NextPartition@p]; c]; Array[f, 88] (* Robert G. Wilson v, Sep 30 2009 *)
    Table[Length[Select[IntegerPartitions[n],Sum[1/m,{m,#}]==1&]],{n,30}] (* Gus Wiseman, Jul 16 2018 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A051908(n)
      ary = [1]
      (2..n).each{|m|
        cnt = 0
        partition(m, 2, m).each{|ary|
          cnt += 1 if ary.inject(0){|s, i| s + 1 / i.to_r} == 1
        }
        ary << cnt
      }
      ary
    end
    p A051908(100) # Seiichi Manyama, May 31 2016

Formula

a(n) > 0 for n > 23.

A316854 Number of integer partitions of n whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 1, 1, 4, 2, 4, 1, 5, 1, 5, 1, 3, 4, 2, 5, 6, 5, 5, 4, 5, 5, 4, 8, 10, 9, 7, 5, 9, 10, 6, 12, 10, 8, 7, 6, 9, 13, 15, 8, 19, 13, 19, 19, 19, 18, 22, 26, 28, 28, 29, 22, 33, 29, 28, 38, 34, 26, 40, 32, 43, 39, 51, 38, 62, 46
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.

Examples

			The a(36) = 10 partitions:
  (36),
  (30,6), (24,12), (18,18),
  (12,12,12),
  (12,12,6,6),
  (15,10,4,4,3), (12,12,6,3,3), (12,8,8,6,2),
  (6,6,6,6,6,6).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Sum[1/m,{m,#}]]&]],{n,30}]
    ric[n_, p_, s_] := If[n == 0, If[IntegerQ[1/s], c++], Do[If[s + 1/i <= 1, ric[n - i, Append[p, i], s + 1/i]], {i, Min[p[[-1]], n], 1, -1}]]; a[n_] := (c = 0; Do[ric[n - j, {j}, 1/j], {j, n}]; c); Array[a, 80] (* after Giovanni Resta in A316898, Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    a(n)={my(s=0); forpart(p=n, if(frac(1/sum(i=1, #p, 1/p[i]))==0, s++)); s} \\ Andrew Howroyd, Jul 15 2018

Extensions

a(51)-a(77) from Giovanni Resta, Jul 15 2018

A316855 Heinz numbers of integer partitions whose reciprocal sum is 1.

Original entry on oeis.org

2, 9, 125, 147, 195, 2401, 3185, 4225, 6475, 6591, 7581, 10101, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 107653, 123823, 142805, 161051, 164255, 164983, 171941, 218855, 228085, 267883, 304175, 312785, 333925, 333935, 335405, 343735, 355355, 390963
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Sequence of all integer partitions whose reciprocal sum is 1 begins: (1), (2,2), (3,3,3), (4,4,2), (6,3,2), (4,4,4,4), (6,4,4,3), (6,6,3,3), (12,4,3,3), (6,6,6,2), (8,8,4,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,10000],Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1&]

A316857 Heinz numbers of integer partitions whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 147, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 195, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[1/Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]&]

A316856 Heinz numbers of integer partitions whose reciprocal sum is an integer.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 125, 128, 144, 147, 162, 195, 250, 256, 288, 294, 324, 390, 500, 512, 576, 588, 648, 729, 780, 1000, 1024, 1125, 1152, 1176, 1296, 1323, 1458, 1560, 1755, 2000, 2048, 2250, 2304, 2352, 2401, 2592, 2646, 2916, 3120
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			195 is the Heinz number of (6,3,2), which has reciprocal sum 1/6 + 1/3 + 1/2 = 1, which is an integer, so 195 belongs to the sequence.
The sequence of all integer partitions whose reciprocal sum is an integer begins: (), (1), (11), (111), (22), (1111), (221), (11111), (2211), (111111), (22111), (2222).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[Sum[m[[2]]/PrimePi[m[[1]]],{m,If[#==1,{},FactorInteger[#]]}]]&]

A316904 Heinz numbers of aperiodic integer partitions into relatively prime parts whose reciprocal sum is an integer.

Original entry on oeis.org

2, 18, 72, 162, 195, 250, 288, 294, 390, 500, 588, 648, 780, 1125, 1152, 1176, 1458, 1560, 1755, 2000, 2250, 2352, 2592, 2646, 3120, 3185, 3510, 4000, 4500, 4608, 4704, 4802, 5292, 6240, 6370, 6475, 7020, 8450, 9000, 9408, 10125, 10368, 10527, 10584, 12480
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The sequence of partitions whose Heinz numbers belong to this sequence begins: (1), (221), (22111), (22221), (632), (3331), (2211111), (4421), (6321), (33311), (44211), (2222111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,20000],And[GCD@@FactorInteger[#][[All,2]]==1,GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,IntegerQ[Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]]&]

A325618 Numbers m such that there exists an integer partition of m whose reciprocal factorial sum is 1.

Original entry on oeis.org

1, 4, 11, 18, 24, 31, 37, 44, 45, 50, 52, 57, 58, 65, 66, 70, 71, 73, 76, 78, 79, 83, 86, 87, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 107, 108, 109, 110, 112, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
Conjecture: 137 is the greatest integer not in this sequence. - Charlie Neder, May 14 2019

Examples

			The sequence of terms together with an integer partition of each whose reciprocal factorial sum is 1 begins:
   1: (1)
   4: (2,2)
  11: (3,3,3,2)
  18: (3,3,3,3,3,3)
  24: (4,4,4,4,3,3,2)
  31: (4,4,4,4,3,3,3,3,3)
  37: (4,4,4,4,4,4,4,4,3,2)
  44: (4,4,4,4,4,4,4,4,3,3,3,3)
  45: (5,5,5,5,5,4,4,4,3,3,2)
  50: (4,4,4,4,4,4,4,4,4,4,4,4,2)
		

Crossrefs

Extensions

a(11)-a(55) from Charlie Neder, May 14 2019

A325620 Number of integer partitions of n whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 14, 14, 15, 16, 18, 19, 20, 22, 24, 25, 26, 28, 31, 33, 34, 36, 39, 41, 43, 45, 49, 52, 54, 57, 61, 65, 68, 71, 76, 80, 84, 88, 93, 98, 103, 107, 113
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The initial terms count the following partitions:
  1: (1)
  2: (1,1)
  3: (1,1,1)
  4: (2,2)
  4: (1,1,1,1)
  5: (2,2,1)
  5: (1,1,1,1,1)
  6: (2,2,1,1)
  6: (1,1,1,1,1,1)
  7: (2,2,1,1,1)
  7: (1,1,1,1,1,1,1)
  8: (2,2,2,2)
  8: (2,2,1,1,1,1)
  8: (1,1,1,1,1,1,1,1)
  9: (2,2,2,2,1)
  9: (2,2,1,1,1,1,1)
  9: (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[1/(#!)]]&]],{n,30}]

A318585 Number of integer partitions of n whose sum of reciprocals squared is an integer.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 12, 12, 13, 14, 16, 16, 18, 19, 21, 23, 26, 27, 29, 30, 34, 35, 39, 43, 48, 51, 55, 57, 63, 67, 74, 78, 84, 89, 99, 103, 112, 119, 132, 139, 148, 156, 170, 182, 199
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

From David A. Corneth, Sep 03 2018: (Start)
Let a valid tuple be a tuple of positive integers whose sum of reciprocals squared is an integer. Initially one only needs to consider tuples of positive integers where each element is > 1. After that some ones could be prepended to a valid tuple to find new valid tuples.
One could define a prime tuple as a valid tuple where no proper part with elements is a valid tuple. So (1) would be a prime tuple as no proper part of (1) has elements and is a valid tuple. Other examples of prime tuples are (2, 2, 2, 2) and (2, 2, 2, 3, 3, 6).
The list of distinct elements in a tuple could be whittled down by finding for each positive integer m the least sum of a prime tuple in which that integer is. For each m, that sum is at most m^3. (End)

Examples

			The a(26) = 7 integer partitions:
  (6332222222)
  (44442221111)
  (63322211111111)
  (22222222222211)
  (222222221111111111)
  (2222111111111111111111)
  (11111111111111111111111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[#^(-2)]]&]],{n,30}]

Extensions

a(61)-a(70) from Giovanni Resta, Sep 03 2018
Showing 1-10 of 36 results. Next