cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A316854 Number of integer partitions of n whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 1, 1, 4, 2, 4, 1, 5, 1, 5, 1, 3, 4, 2, 5, 6, 5, 5, 4, 5, 5, 4, 8, 10, 9, 7, 5, 9, 10, 6, 12, 10, 8, 7, 6, 9, 13, 15, 8, 19, 13, 19, 19, 19, 18, 22, 26, 28, 28, 29, 22, 33, 29, 28, 38, 34, 26, 40, 32, 43, 39, 51, 38, 62, 46
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.

Examples

			The a(36) = 10 partitions:
  (36),
  (30,6), (24,12), (18,18),
  (12,12,12),
  (12,12,6,6),
  (15,10,4,4,3), (12,12,6,3,3), (12,8,8,6,2),
  (6,6,6,6,6,6).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Sum[1/m,{m,#}]]&]],{n,30}]
    ric[n_, p_, s_] := If[n == 0, If[IntegerQ[1/s], c++], Do[If[s + 1/i <= 1, ric[n - i, Append[p, i], s + 1/i]], {i, Min[p[[-1]], n], 1, -1}]]; a[n_] := (c = 0; Do[ric[n - j, {j}, 1/j], {j, n}]; c); Array[a, 80] (* after Giovanni Resta in A316898, Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    a(n)={my(s=0); forpart(p=n, if(frac(1/sum(i=1, #p, 1/p[i]))==0, s++)); s} \\ Andrew Howroyd, Jul 15 2018

Extensions

a(51)-a(77) from Giovanni Resta, Jul 15 2018

A316855 Heinz numbers of integer partitions whose reciprocal sum is 1.

Original entry on oeis.org

2, 9, 125, 147, 195, 2401, 3185, 4225, 6475, 6591, 7581, 10101, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 107653, 123823, 142805, 161051, 164255, 164983, 171941, 218855, 228085, 267883, 304175, 312785, 333925, 333935, 335405, 343735, 355355, 390963
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Sequence of all integer partitions whose reciprocal sum is 1 begins: (1), (2,2), (3,3,3), (4,4,2), (6,3,2), (4,4,4,4), (6,4,4,3), (6,6,3,3), (12,4,3,3), (6,6,6,2), (8,8,4,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,10000],Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1&]

A316857 Heinz numbers of integer partitions whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 147, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 195, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[1/Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]&]

A316888 Heinz numbers of aperiodic integer partitions into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

2, 195, 3185, 6475, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 164255, 171941, 218855, 228085, 267883, 312785, 333925, 333935, 335405, 343735, 355355, 414295, 442975, 474513, 527425, 549575, 607475, 633777, 691041, 711321, 722425, 753865, 804837, 822783
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.
Does not contain 29888089, which belongs to A316890 and is the Heinz number of a periodic partition.

Examples

			The partition (6,4,4,3) with Heinz number 3185 is aperiodic, has relatively prime parts, and 1/6 + 1/4 + 1/4 + 1/3 = 1, so 3185 belongs to the sequence.
The sequence of partitions whose Heinz numbers belong to the sequence begins: (1), (6,3,2), (6,4,4,3), (12,4,3,3), (10,5,5,2), (20,5,4,2), (15,10,3,2), (12,12,3,2), (18,9,3,2), (24,8,3,2), (42,7,3,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@FactorInteger[#][[All,2]]==1,GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1]&]

A316904 Heinz numbers of aperiodic integer partitions into relatively prime parts whose reciprocal sum is an integer.

Original entry on oeis.org

2, 18, 72, 162, 195, 250, 288, 294, 390, 500, 588, 648, 780, 1125, 1152, 1176, 1458, 1560, 1755, 2000, 2250, 2352, 2592, 2646, 3120, 3185, 3510, 4000, 4500, 4608, 4704, 4802, 5292, 6240, 6370, 6475, 7020, 8450, 9000, 9408, 10125, 10368, 10527, 10584, 12480
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The sequence of partitions whose Heinz numbers belong to this sequence begins: (1), (221), (22111), (22221), (632), (3331), (2211111), (4421), (6321), (33311), (44211), (2222111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,20000],And[GCD@@FactorInteger[#][[All,2]]==1,GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,IntegerQ[Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]]&]

A325620 Number of integer partitions of n whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 14, 14, 15, 16, 18, 19, 20, 22, 24, 25, 26, 28, 31, 33, 34, 36, 39, 41, 43, 45, 49, 52, 54, 57, 61, 65, 68, 71, 76, 80, 84, 88, 93, 98, 103, 107, 113
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The initial terms count the following partitions:
  1: (1)
  2: (1,1)
  3: (1,1,1)
  4: (2,2)
  4: (1,1,1,1)
  5: (2,2,1)
  5: (1,1,1,1,1)
  6: (2,2,1,1)
  6: (1,1,1,1,1,1)
  7: (2,2,1,1,1)
  7: (1,1,1,1,1,1,1)
  8: (2,2,2,2)
  8: (2,2,1,1,1,1)
  8: (1,1,1,1,1,1,1,1)
  9: (2,2,2,2,1)
  9: (2,2,1,1,1,1,1)
  9: (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[1/(#!)]]&]],{n,30}]

A318585 Number of integer partitions of n whose sum of reciprocals squared is an integer.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 12, 12, 13, 14, 16, 16, 18, 19, 21, 23, 26, 27, 29, 30, 34, 35, 39, 43, 48, 51, 55, 57, 63, 67, 74, 78, 84, 89, 99, 103, 112, 119, 132, 139, 148, 156, 170, 182, 199
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

From David A. Corneth, Sep 03 2018: (Start)
Let a valid tuple be a tuple of positive integers whose sum of reciprocals squared is an integer. Initially one only needs to consider tuples of positive integers where each element is > 1. After that some ones could be prepended to a valid tuple to find new valid tuples.
One could define a prime tuple as a valid tuple where no proper part with elements is a valid tuple. So (1) would be a prime tuple as no proper part of (1) has elements and is a valid tuple. Other examples of prime tuples are (2, 2, 2, 2) and (2, 2, 2, 3, 3, 6).
The list of distinct elements in a tuple could be whittled down by finding for each positive integer m the least sum of a prime tuple in which that integer is. For each m, that sum is at most m^3. (End)

Examples

			The a(26) = 7 integer partitions:
  (6332222222)
  (44442221111)
  (63322211111111)
  (22222222222211)
  (222222221111111111)
  (2222111111111111111111)
  (11111111111111111111111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[#^(-2)]]&]],{n,30}]

Extensions

a(61)-a(70) from Giovanni Resta, Sep 03 2018

A318573 Numerator of the reciprocal sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 5, 1, 5, 5, 4, 1, 2, 1, 7, 3, 6, 1, 7, 2, 7, 3, 9, 1, 11, 1, 5, 7, 8, 7, 3, 1, 9, 2, 10, 1, 7, 1, 11, 4, 10, 1, 9, 1, 5, 9, 13, 1, 5, 8, 13, 5, 11, 1, 17, 1, 12, 5, 6, 1, 17, 1, 15, 11, 19, 1, 4, 1, 13, 7, 17, 9, 5, 1, 13, 2, 14, 1, 11, 10, 15, 3, 16, 1, 7, 5, 19, 13, 16, 11, 11, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Table[Sum[pr[[2]]/PrimePi[pr[[1]]],{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]//Numerator
  • PARI
    A318573(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/primepi(f[i, 1]))); }; \\ Antti Karttunen, Nov 17 2019

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the numerator of Sum y_i/x_i.

Extensions

More terms from Antti Karttunen, Nov 17 2019

A318587 Heinz numbers of integer partitions whose sum of reciprocals squared is 1.

Original entry on oeis.org

2, 81, 8775, 64827, 950625, 1953125, 7022925, 9055935, 21781575, 36020025, 50124555, 51883209, 57909033, 102984375, 118978125, 760816875, 816747435, 981059625, 1206902781, 1265058675, 1387132263, 2359670625, 3902169375, 4868424351, 5222768733, 5430160125
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of integer partitions with Heinz numbers in this sequence begins: (1), (2222), (633222), (4444222), (66333322).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000],Total[If[#==1,{},Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]^2]]]==1&]

Extensions

a(6)-a(26) from Alois P. Heinz, Aug 30 2018

A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 375, 512, 576, 648, 729, 750, 1024, 1152, 1296, 1458, 1500, 2048, 2304, 2592, 2916, 3000, 3375, 4096, 4608, 5184, 5832, 6000, 6561, 6750, 8192, 9216, 10368, 11664, 12000, 13122, 13500
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
      9: {2,2}
     16: {1,1,1,1}
     18: {1,2,2}
     32: {1,1,1,1,1}
     36: {1,1,2,2}
     64: {1,1,1,1,1,1}
     72: {1,1,1,2,2}
     81: {2,2,2,2}
    128: {1,1,1,1,1,1,1}
    144: {1,1,1,1,2,2}
    162: {1,2,2,2,2}
    256: {1,1,1,1,1,1,1,1}
    288: {1,1,1,1,1,2,2}
    324: {1,1,2,2,2,2}
    375: {2,3,3,3}
    512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623.

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]
Showing 1-10 of 21 results. Next