cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A051908 Number of ways to express 1 as the sum of unit fractions such that the sum of the denominators is n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 3, 0, 1, 1, 1, 1, 2, 3, 2, 2, 1, 2, 2, 2, 4, 5, 5, 2, 4, 5, 5, 9, 4, 4, 6, 4, 4, 7, 8, 4, 10, 9, 9, 11, 8, 13, 13, 15, 16, 21, 18, 16, 22, 19, 18, 30, 24, 19, 26, 28, 26, 29, 35, 29, 44, 28, 47, 48
Offset: 1

Views

Author

Jud McCranie, Dec 16 1999

Keywords

Comments

Also the number of partitions of n whose reciprocal sums to 1; "exact partitions". - Robert G. Wilson v, Sep 30 2009

Examples

			1 = 1/2 + 1/2, the sum of denominators is 4, and this is the only expression of 1 as unit fractions with denominator sum 4, so a(4)=1.
The a(22) = 3 partitions whose reciprocal sum is 1 are (12,4,3,3), (10,5,5,2), (8,8,4,2). - _Gus Wiseman_, Jul 16 2018
		

References

  • Derrick Niederman, "Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed", a Perigee Book, Penguin Group, NY, 2009, pp. 82-83. [From Robert G. Wilson v, Sep 30 2009]

Crossrefs

A028229 lists n such that a(n)=0.

Programs

  • Mathematica
    (* first do *) << "Combinatorica`"; (* then *) f[n_] := Block[{c = i = 0, k = PartitionsP@n, p = {n}}, While[i < k, If[1 == Plus @@ (1/p), c++ ]; i++; p = NextPartition@p]; c]; Array[f, 88] (* Robert G. Wilson v, Sep 30 2009 *)
    Table[Length[Select[IntegerPartitions[n],Sum[1/m,{m,#}]==1&]],{n,30}] (* Gus Wiseman, Jul 16 2018 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A051908(n)
      ary = [1]
      (2..n).each{|m|
        cnt = 0
        partition(m, 2, m).each{|ary|
          cnt += 1 if ary.inject(0){|s, i| s + 1 / i.to_r} == 1
        }
        ary << cnt
      }
      ary
    end
    p A051908(100) # Seiichi Manyama, May 31 2016

Formula

a(n) > 0 for n > 23.

A316888 Heinz numbers of aperiodic integer partitions into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

2, 195, 3185, 6475, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 164255, 171941, 218855, 228085, 267883, 312785, 333925, 333935, 335405, 343735, 355355, 414295, 442975, 474513, 527425, 549575, 607475, 633777, 691041, 711321, 722425, 753865, 804837, 822783
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.
Does not contain 29888089, which belongs to A316890 and is the Heinz number of a periodic partition.

Examples

			The partition (6,4,4,3) with Heinz number 3185 is aperiodic, has relatively prime parts, and 1/6 + 1/4 + 1/4 + 1/3 = 1, so 3185 belongs to the sequence.
The sequence of partitions whose Heinz numbers belong to the sequence begins: (1), (6,3,2), (6,4,4,3), (12,4,3,3), (10,5,5,2), (20,5,4,2), (15,10,3,2), (12,12,3,2), (18,9,3,2), (24,8,3,2), (42,7,3,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@FactorInteger[#][[All,2]]==1,GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1]&]

A316890 Heinz numbers of integer partitions into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

2, 195, 3185, 6475, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 164255, 171941, 218855, 228085, 267883, 312785, 333925, 333935, 335405, 343735, 355355, 414295, 442975, 474513, 527425, 549575, 607475, 633777, 691041, 711321, 722425, 753865, 804837, 822783
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Includes 29888089, which is the first perfect power in the sequence and is absent from A316888.

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1]&]

A316898 Number of integer partitions of n into relatively prime parts whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 4, 1, 3, 1, 1, 1, 3, 1, 8, 3, 1, 1, 9, 2, 11, 3, 3, 3, 5, 2, 7, 6, 4, 7, 12, 5, 14, 6, 11, 12, 25, 11, 27, 17, 15, 19, 25, 9, 37, 20, 21, 19, 31, 19, 38, 33, 26, 37, 38, 36, 64, 39, 46, 53, 63, 39, 80, 63, 65, 66, 94, 59, 105
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
Records: 1, 2, 4, 8, 9, 11, 12, 14, 25, 27, 37, 38, 64, 80, 94, 105, 119, 154, 184, ..., . - Robert G. Wilson v, Jul 18 2018

Examples

			The a(37) = 8 partitions: (20,12,5), (15,12,10), (24,8,3,2), (15,10,6,6), (20,5,4,4,4), (15,10,6,3,3), (14,7,7,7,2), (10,10,10,5,2).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, s = 0, lmt = 1 + PartitionsP@ n}, While[k < lmt, s += Length[ Select[ IntegerPartitions[n, {k, k}], GCD @@ # == 1 && IntegerQ[1/Sum[1/m, {m, #}]] &]]; k++]; s]; Array[f, 50] (* slightly modified by Robert G. Wilson v, Jul 17 2018 *) (* or *)
    ric[n_,p_,s_] := If[n==0, If[IntegerQ[1/s] && GCD @@ p == 1, c++], Do[ If[s + 1/i <= 1, ric[n-i, Append[p, i], s + 1/i]], {i, Min[p[[-1]], n], 1, -1}]]; a[n_] := (c=0; Do[ric[n-j, {j}, 1/j], {j, n}]; c); Array[a, 50] (* Giovanni Resta, Jul 18 2018 *)

Extensions

a(51)-a(91) from Robert G. Wilson v, Jul 17 2018

A316889 Heinz numbers of aperiodic integer partitions whose reciprocal sum is 1.

Original entry on oeis.org

2, 147, 195, 3185, 6475, 6591, 7581, 10101, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 107653, 123823, 142805, 164255, 164983, 171941, 218855, 228085, 267883, 304175, 312785, 333925, 333935, 335405, 343735, 355355, 390963, 414295, 442975, 444925, 455975
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			Sequence of partitions whose Heinz numbers belong to the sequence begins: (1), (4,4,2), (6,3,2), (6,4,4,3), (12,4,3,3), (6,6,6,2), (8,8,4,2), (12,6,4,2), (10,5,5,2), (20,5,4,2), (15,10,3,2), (12,12,3,2), (18,9,3,2), (24,8,3,2), (42,7,3,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@FactorInteger[#][[All,2]]==1,Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1]&]

A316891 Number of aperiodic integer partitions of n into relatively prime parts whose reciprocal sum is an integer.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 5, 2, 7, 4, 7, 6, 13, 7, 18, 12, 20, 17, 32, 20, 39, 31, 47, 45, 74, 56, 96, 83, 109, 105, 151, 130, 199, 183, 234, 232, 319, 286, 404, 386, 473, 488, 638, 599, 782, 767, 931, 960, 1197, 1165, 1465, 1477, 1747, 1814, 2212, 2196
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The a(17) = 13 partitions:
(6443),
(44441),
(3332222), (6322211),
(44222111),
(222222221), (333221111), (632111111),
(4421111111),
(22222211111), (33311111111),
(2222111111111),
(221111111111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#==1,GCD@@Length/@Split[#]==1,IntegerQ[Sum[1/m,{m,#}]]]&]],{n,50}]

Extensions

a(51)-a(60) from Alois P. Heinz, Jul 18 2018

A316893 Number of aperiodic integer partitions of n into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 3, 1, 2, 1, 1, 1, 2, 1, 5, 3, 1, 1, 5, 2, 9, 3, 3, 3, 4, 2, 6, 6, 3, 4, 9, 5, 10, 4, 10, 8, 15, 10, 21, 12, 14, 16, 18, 9, 30, 18, 17, 16, 28, 16, 29, 25, 26, 30, 28, 33, 48, 31
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#==1,GCD@@Length/@Split[#]==1,Sum[1/m,{m,#}]==1]&]],{n,30}]

Extensions

a(71)-a(80) from Giovanni Resta, Jul 16 2018

A316894 Number of aperiodic integer partitions of n whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 4, 1, 5, 1, 2, 3, 2, 4, 5, 5, 5, 4, 3, 5, 4, 8, 6, 9, 7, 5, 6, 10, 6, 12, 8, 7, 7, 6, 6, 12, 12, 8, 18, 13, 16, 19, 17, 18, 21, 26, 26, 28, 29, 21, 29, 29, 27, 38, 32, 26, 37, 32, 38, 39, 49, 36, 61, 46, 55
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@Length/@Split[#]==1,IntegerQ[1/Sum[1/m,{m,#}]]]&]],{n,30}]

Extensions

a(51)-a(78) from Giovanni Resta, Jul 16 2018

A316895 Number of aperiodic integer partitions of n whose reciprocal sum is an integer.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 2, 2, 5, 2, 7, 5, 7, 6, 13, 8, 18, 13, 20, 19, 32, 21, 39, 35, 49, 48, 74, 60, 96, 86, 110, 111, 151, 135, 199, 192, 235, 239, 319, 299, 404, 394, 477, 506, 638, 609, 782, 788, 934, 978, 1197, 1193, 1466, 1501, 1752, 1851, 2212, 2227
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The a(11) = 5 partitions are (632), (4421), (33311), (2222111), (221111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@Length/@Split[#]==1,IntegerQ[Sum[1/m,{m,#}]]]&]],{n,30}]

Extensions

a(51)-a(60) from Alois P. Heinz, Jul 17 2018

A316896 Number of aperiodic integer partitions of n whose reciprocal sum is 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 3, 0, 1, 0, 1, 1, 2, 3, 2, 2, 1, 2, 2, 2, 3, 5, 5, 2, 2, 5, 5, 9, 3, 4, 6, 4, 3, 6, 8, 4, 10, 9, 8, 11, 7, 13, 12, 15, 15, 21, 18, 16, 21, 19, 17, 30, 23, 19, 23, 28, 25, 29, 34, 29, 44, 28, 46, 48, 42
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The a(37) = 5 partitions are (24,8,3,2), (20,5,4,4,4), (15,10,6,3,3), (14,7,7,7,2), (10,10,10,5,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@Length/@Split[#]==1,Sum[1/m,{m,#}]==1]&]],{n,30}]

Extensions

a(51)-a(80) from Giovanni Resta, Jul 16 2018
Showing 1-10 of 16 results. Next