cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058379 Essentially parallel series-parallel networks with n labeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 1, 0, 3, 7, 90, 676, 9058, 117286, 1934068, 34354196, 698971944, 15520697072, 379690093016, 10064445063128, 288507479108384, 8875736500909216, 291965748820524000, 10221371162528667136, 379535362671828005536, 14896748155197456096736
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2000

Keywords

Examples

			A(x) = x + 1/2*x^3 + 7/24*x^4 + 3/4*x^5 + 169/180*x^6 + ...
For n=4 there are two unlabeled networks:
..o.....o--o
./.\.../....\
o...o o------o
.\./
..o
which can be labeled in 3 (resp. 4) ways, for a total of 7.
		

Crossrefs

Cf. A058380, A058381. See A000669 for unlabeled case when parallel edges are allowed.

Programs

  • Maple
    Q := x; for d from 1 to 30 do Q := Q+c*x^(d+1)/(d+1)!; t1 := coeff(series(2*Q - (exp(Q)-1+log(1+x)), x, d+2), x, d+1); t2 := solve(t1,c); Q := subs(c=t2,Q); Q := series(Q,x,d+2); od: A058379 := n->coeff(Q,x,n)*n!; # method 1
    Order := 50; t1 := solve(series((exp(A)-2*A-1),A)=-log(1+x),A); A058379 := n-> n!*coeff(t1,x,n); # method 2
  • Mathematica
    CoefficientList[InverseSeries[Series[-1+E^(1+2*a-E^a), {a, 0, 20}], x], x]*Range[0, 20]! (* Jean-François Alcover, Jul 21 2011 *)
    CoefficientList[Series[(-1 + Log[1+x] - 2*ProductLog[-Sqrt[1+x]/(2*Sqrt[E])])/2,{x,0,15}],x] * Range[0,15]! (* Vaclav Kotesovec, Jan 08 2014 *)
  • Maxima
    a(n):=sum((sum((m+k-1)!*sum(sum(((-1)^i*2^i*stirling2(m+j-i-1, j-i))/(i!*(m+j-i-1)!),i,0,j)/(k-j)!,j,0,k),k,0,m-1)) *stirling1(n,m), m,1,n); /* Vladimir Kruchinin, Feb 17 2012 */
    
  • PARI
    Vec(serlaplace(-1/2 + log(1+x)/2 - lambertw(-exp(-.5)*sqrt(1+x)/2))) \/ 1 \\ Charles R Greathouse IV, Jun 16 2021

Formula

E.g.f. satisfies A(x) = x + O(x^2), 2*A(x) = exp(A(x)) - 1 + log(1+x).
a(n) = sum(m=1..n, (sum(k=0..m-1, (m+k-1)!*sum(j=0..k, sum(i=0..j, ((-1)^i*2^i*Stirling2(m+j-i-1,j-i))/(i!*(m+j-i-1)!))/(k-j)!))) *Stirling1(n,m)). - Vladimir Kruchinin, Feb 17 2012
E.g.f.: -1/2 + log(1+x)/2 - LambertW(-exp(-1/2)*sqrt(1+x)/2). - Vaclav Kotesovec, Jan 08 2014
a(n) ~ n^(n-1) / (2*sqrt(2) * (4-exp(1))^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014